https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=38032735&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 380327352024012420240303
2379-3708922024Jan23JCI insightJCI InsightUric acid formation is driven by crosstalk between skeletal muscle and other cell types.e17181510.1172/jci.insight.171815Hyperuricemia is implicated in numerous pathologies, but the mechanisms underlying uric acid production are poorly understood. Using a combination of mouse studies, cell culture studies, and human serum samples, we sought to determine the cellular source of uric acid. In mice, fasting and glucocorticoid treatment increased serum uric acid and uric acid release from ex vivo-incubated skeletal muscle. In vitro, glucocorticoids and the transcription factor FoxO3 increased purine nucleotide degradation and purine release from differentiated muscle cells, which coincided with the transcriptional upregulation of AMP deaminase 3, a rate-limiting enzyme in adenine nucleotide degradation. Heavy isotope tracing during coculture experiments revealed that oxidation of muscle purines to uric acid required their transfer from muscle cells to a cell type that expresses xanthine oxidoreductase, such as endothelial cells. Last, in healthy women, matched for age and body composition, serum uric acid was greater in individuals scoring below average on standard physical function assessments. Together, these studies reveal skeletal muscle purine degradation is an underlying driver of uric acid production, with the final step of uric acid production occurring primarily in a nonmuscle cell type. This suggests that skeletal muscle fiber purine degradation may represent a therapeutic target to reduce serum uric acid and treat numerous pathologies.MillerSpencer GSGIndiana Center for Musculoskeletal Health and.Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.Department of Kinesiology, East Carolina University, Greenville, North Carolina, USA.MatiasCatalinaCIndiana Center for Musculoskeletal Health and.Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.HafenPaul SPSIndiana Center for Musculoskeletal Health and.Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.LawAndrew SASIndiana Center for Musculoskeletal Health and.Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.WitczakCarol ACAIndiana Center for Musculoskeletal Health and.Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.BraultJeffrey JJJIndiana Center for Musculoskeletal Health and.Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.engP30 AR072581ARNIAMS NIH HHSUnited StatesR01 AR070200ARNIAMS NIH HHSUnited StatesR01 DK103562DKNIDDK NIH HHSUnited StatesJournal Article20240123
United StatesJCI Insight1016760732379-3708268B43MJ25Uric AcidEC 1.17.1.4Xanthine DehydrogenaseIMHumansFemaleMiceAnimalsUric AcidmetabolismEndothelial CellsmetabolismXanthine DehydrogenaseMuscle, SkeletalmetabolismOxidation-ReductionBioenergeticsMetabolismMuscle BiologySkeletal muscleConflict of interest: The authors have declared that no conflict of interest exists.
2023426202311282024124643202311301845202311301232024123epublish38032735PMC1090623610.1172/jci.insight.171815171815Fini MA, et al. Contribution of uric acid to cancer risk, recurrence, and mortality. Clin Transl Med. 2012;1(1):16. doi: 10.1186/2001-1326-1-16.10.1186/2001-1326-1-16PMC356098123369448Anker SD, et al. Uric acid and survival in chronic heart failure: validation and application in metabolic, functional, and hemodynamic staging. Circulation. 2003;107(15):1991–1997. doi: 10.1161/01.CIR.0000065637.10517.A0.10.1161/01.CIR.0000065637.10517.A012707250Fang J, Alderman MH. Serum uric acid and cardiovascular mortality - the NHANES I epidemiologic follow-up study, 1971-1992. JAMA. 2000;283(18):2404–2410. doi: 10.1001/jama.283.18.2404.10.1001/jama.283.18.240410815083Xia X, et al. Serum uric acid and mortality in chronic kidney disease: a systematic review and meta-analysis. Metabolism. 2016;65(9):1326–1341. doi: 10.1016/j.metabol.2016.05.009.10.1016/j.metabol.2016.05.00927506740Dehghan A, et al. High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care. 2008;31(2):361–362. doi: 10.2337/dc07-1276.10.2337/dc07-127617977935Afzali A, et al. Association between serum uric acid level and chronic liver disease in the United States. Hepatology. 2010;52(2):578–589. doi: 10.1002/hep.23717.10.1002/hep.2371720683957Ford ES, et al. Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation. 2007;115(19):2526–2532. doi: 10.1161/CIRCULATIONAHA.106.657627.10.1161/CIRCULATIONAHA.106.65762717470699Ruggiero C, et al. Uric acid and inflammatory markers. Eur Heart J. 2006;27(10):1174–1181. doi: 10.1093/eurheartj/ehi879.10.1093/eurheartj/ehi879PMC266816316611671George J, et al. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation. 2006;114(23):2508–2516. doi: 10.1161/CIRCULATIONAHA.106.651117.10.1161/CIRCULATIONAHA.106.65111717130343Nishikawa T, et al. Xanthine oxidase inhibition attenuates insulin resistance and diet-induced steatohepatitis in mice. Sci Rep. 2020;10(1):815. doi: 10.1038/s41598-020-57784-3.10.1038/s41598-020-57784-3PMC697275631965018Xu C, et al. Xanthine oxidase in non-alcoholic fatty liver disease and hyperuricemia: one stone hits two birds. J Hepatol. 2015;62(6):1412–1419. doi: 10.1016/j.jhep.2015.01.019.10.1016/j.jhep.2015.01.01925623823Derbre F, et al. Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases. PLoS One. 2012;7(10):e46668. doi: 10.1371/journal.pone.0046668.10.1371/journal.pone.0046668PMC346525623071610Ferrando B, et al. Allopurinol partially prevents disuse muscle atrophy in mice and humans. Sci Rep. 2018;8(1):3549. doi: 10.1038/s41598-018-21552-1.10.1038/s41598-018-21552-1PMC582484629476130Whidden MA, et al. Xanthine oxidase contributes to mechanical ventilation-induced diaphragmatic oxidative stress and contractile dysfunction. J Appl Physiol (1985) 2009;106(2):385–394. doi: 10.1152/japplphysiol.91106.2008.10.1152/japplphysiol.91106.2008PMC377432418974366Nambu H, et al. Inhibition of xanthine oxidase in the acute phase of myocardial infarction prevents skeletal muscle abnormalities and exercise intolerance. Cardiovasc Res. 2021;117(3):805–819. doi: 10.1093/cvr/cvaa127.10.1093/cvr/cvaa12732402072Hellsten-Westing Y. Immunohistochemical localization of xanthine oxidase in human cardiac and skeletal muscle. Histochemistry. 1993;100(3):215–222. doi: 10.1007/BF00269094.10.1007/BF002690948244772Jarasch ED, et al. Localization of xanthine oxidase in mammary-gland epithelium and capillary endothelium. Cell. 1981;25(1):67–82. doi: 10.1016/0092-8674(81)90232-4.10.1016/0092-8674(81)90232-46895049Tsushima Y, et al. Uric acid secretion from adipose tissue and its increase in obesity. J Biol Chem. 2013;288(38):27138–27149. doi: 10.1074/jbc.M113.485094.10.1074/jbc.M113.485094PMC377971223913681Petrany MJ, et al. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat Commun. 2020;11(1):6374. doi: 10.1038/s41467-020-20063-w.10.1038/s41467-020-20063-wPMC773346033311464Hellsten Y, et al. AMP deamination and purine exchange in human skeletal muscle during and after intense exercise. J Physiol. 1999;520(pt 3):909–920. doi: 10.1111/j.1469-7793.1999.00909.x.10.1111/j.1469-7793.1999.00909.xPMC226962610545153Hellsten-Westing Y, et al. Exchange of purines in human liver and skeletal muscle with short-term exhaustive exercise. Am J Physiol. 1994;266(1 pt 2):R81–R86. doi: 10.1152/ajpregu.1994.266.1.R81.10.1152/ajpregu.1994.266.1.R818304559Miller SG, et al. Increased adenine nucleotide degradation in skeletal muscle atrophy. Int J Mol Sci. 2019;21(1):88. doi: 10.3390/ijms21010088.10.3390/ijms21010088PMC698151431877712Miller SG, et al. AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal muscle. Metabolism. 2021;123:154864. doi: 10.1016/j.metabol.2021.154864.10.1016/j.metabol.2021.154864PMC845309834400216Davis PR, et al. Increased AMP deaminase activity decreases ATP content and slows protein degradation in cultured skeletal muscle. Metabolism. 2020;108:154257. doi: 10.1016/j.metabol.2020.154257.10.1016/j.metabol.2020.154257PMC731987632370945Lecker SH, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004;18(1):39–51. doi: 10.1096/fj.03-0610com.10.1096/fj.03-0610com14718385Brocca L, et al. Exercise preconditioning blunts early atrogenes expression and atrophy in gastrocnemius muscle of hindlimb unloaded mice. Int J Mol Sci. 2021;23(1):148. doi: 10.3390/ijms23010148.10.3390/ijms23010148PMC874533835008572Romanello V, et al. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J. 2010;29(10):1774–1785. doi: 10.1038/emboj.2010.60.10.1038/emboj.2010.60PMC287696520400940Sandri M, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399–412. doi: 10.1016/S0092-8674(04)00400-3.10.1016/S0092-8674(04)00400-3PMC361973415109499Milan G, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670. doi: 10.1038/ncomms7670.10.1038/ncomms7670PMC440331625858807Barclay CJ. Modelling diffusive O(2) supply to isolated preparations of mammalian skeletal and cardiac muscle. J Muscle Res Cell Motil. 2005;26(4–5):225–235. doi: 10.1007/s10974-005-9013-x.10.1007/s10974-005-9013-x16322911Bodine SC, Furlow JD. Glucocorticoids and skeletal muscle. Adv Exp Med Biol. 2015;872:145–176. doi: 10.1007/978-1-4939-2895-8_7.10.1007/978-1-4939-2895-8_726215994Holecek M. Histidine in health and disease: metabolism, physiological importance, and use as a supplement. Nutrients. 2020;12(3):848. doi: 10.3390/nu12030848.10.3390/nu12030848PMC714635532235743Young VR, Munro HN. Ntau-methylhistidine (3-methylhistidine) and muscle protein turnover: an overview. Fed Proc. 1978;37(9):2291–2300.350635Stitt TN, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14(3):395–403. doi: 10.1016/S1097-2765(04)00211-4.10.1016/S1097-2765(04)00211-415125842Zhao J, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007;6(6):472–483. doi: 10.1016/j.cmet.2007.11.004.10.1016/j.cmet.2007.11.00418054316McNally JS, et al. Regulation of xanthine oxidoreductase protein expression by hydrogen peroxide and calcium. Arterioscler Thromb Vasc Biol. 2005;25(8):1623–1628. doi: 10.1161/01.ATV.0000170827.16296.6e.10.1161/01.ATV.0000170827.16296.6e15905466Wicks KL, Hood DA. Mitochondrial adaptations in denervated muscle - relationship to muscle performance. Am J Physiol. 1991;260(4 pt 1):C841–C850. doi: 10.1152/ajpcell.1991.260.4.C841.10.1152/ajpcell.1991.260.4.C8411850197Mitchell WK, et al. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260. doi: 10.3389/fphys.2012.00260.10.3389/fphys.2012.00260PMC342903622934016Delfinis LJ, et al. Muscle weakness precedes atrophy during cancer cachexia and is linked to muscle-specific mitochondrial stress. JCI Insight. 2022;7(24):155147. doi: 10.1172/jci.insight.155147.10.1172/jci.insight.155147PMC986996836346680Alvim RO, et al. Influence of muscle mass on the serum uric acid levels in children and adolescents. Nutr Metab Cardiovasc Dis. 2020;30(2):300–305. doi: 10.1016/j.numecd.2019.08.019.10.1016/j.numecd.2019.08.01931648885Baker JF, et al. Associations between low serum urate, body composition, and mortality. Arthritis Rheumatol. 2023;75(1):133–140. doi: 10.1002/art.42301.10.1002/art.42301PMC1060058735974440Kochlik B, et al. The influence of dietary habits and meat consumption on plasma 3-methylhistidine-A potential marker for muscle protein turnover. Mol Nutr Food Res. 2018;62(9):e1701062. doi: 10.1002/mnfr.201701062.10.1002/mnfr.201701062PMC596923429573154Greiner JV, Glonek T. Intracellular ATP concentration and implication for cellular evolution. Biology (Basel) 2021;10(11):1166. doi: 10.3390/biology10111166.10.3390/biology10111166PMC861505534827159Brosh S, et al. De novo purine synthesis in skeletal muscle. Biochim Biophys Acta. 1982;714(1):181–183. doi: 10.1016/0304-4165(82)90143-X.10.1016/0304-4165(82)90143-X7055607Hancock CR, et al. Protecting the cellular energy state during contractions: role of AMP deaminase. J Physiol Pharmacol. 2006;57 Suppl 10:17–29.17242488Dumas JF, et al. Dexamethasone impairs muscle energetics, studied by (31)P NMR, in rats. Diabetologia. 2005;48(2):328–335. doi: 10.1007/s00125-004-1631-0.10.1007/s00125-004-1631-015645207Kuo T, et al. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc Natl Acad Sci U S A. 2012;109(28):11160–11165. doi: 10.1073/pnas.1111334109.10.1073/pnas.1111334109PMC339654322733784Viguerie N, et al. Multiple effects of a short-term dexamethasone treatment in human skeletal muscle and adipose tissue. Physiol Genomics. 2012;44(2):141–151. doi: 10.1152/physiolgenomics.00032.2011.10.1152/physiolgenomics.00032.201122108209Huang C, et al. An inverted J-shaped association of serum uric acid with muscle strength among Japanese adult men: a cross-sectional study. BMC Musculoskelet Disord. 2013;14:258. doi: 10.1186/1471-2474-14-258.10.1186/1471-2474-14-258PMC376666524000893Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555(pt 3):589–606. doi: 10.1113/jphysiol.2003.055913.10.1113/jphysiol.2003.055913PMC166487514694147Goicoechea M, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol. 2010;5(8):1388–1393. doi: 10.2215/CJN.01580210.10.2215/CJN.01580210PMC292441720538833Konishi M, et al. Febuxostat improves outcome in a rat model of cancer cachexia. J Cachexia Sarcopenia Muscle. 2015;6(2):174–180. doi: 10.1002/jcsm.12017.10.1002/jcsm.12017PMC445808326136193Johnson TA, et al. Shortage of cellular ATP as a cause of diseases and strategies to enhance ATP. Front Pharmacol. 2019;10:98. doi: 10.3389/fphar.2019.00098.10.3389/fphar.2019.00098PMC639077530837873Metter EJ, et al. Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci. 2002;57(10):B359–B365. doi: 10.1093/gerona/57.10.B359.10.1093/gerona/57.10.B35912242311Ryu HJ, et al. Clinical risk factors for adverse events in allopurinol users. J Clin Pharmacol. 2013;53(2):211–216. doi: 10.1177/0091270012439715.10.1177/009127001243971523436266Bollinger LM, et al. Palmitate and oleate co-treatment increases myocellular protein content via impaired protein degradation. Nutrition. 2018;46:41–43. doi: 10.1016/j.nut.2017.07.017.10.1016/j.nut.2017.07.01729290354Law AS, et al. Liquid chromatography method for simultaneous quantification of ATP and its degradation products compatible with both UV-Vis and mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2022;1206:123351. doi: 10.1016/j.jchromb.2022.123351.10.1016/j.jchromb.2022.123351PMC947916335797802Bollinger LM, et al. Skeletal muscle myotubes in severe obesity exhibit altered ubiquitin-proteasome and autophagic/lysosomal proteolytic flux. Obesity (Silver Spring) 2015;23(6):1185–1193. doi: 10.1002/oby.21081.10.1002/oby.21081PMC444547426010327Warden SJ, et al. Sex- and age-specific centile curves and downloadable calculator for clinical muscle strength tests to identify probable sarcopenia. Phys Ther. 2022;102(3):pzab299. doi: 10.1093/ptj/pzab299.10.1093/ptj/pzab299PMC900505434972866