Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The phytotoxicity of invasive plants (IPS) has been identified as one of the main factors influencing their invasion success. The invasion of IPS can occur to varying degrees in the habitats. Two IPS can invade one habitat. This study aimed to evaluate the mono- and co-phytotoxicity of two Asteraceae IPS Solidago canadensis L. and Bidens pilosa L. with different invasion degrees (including light invasion (relative abundance <50%) and heavy invasion (relative abundance ≥50%)) on the horticultural Asteraceae species Lactuca sativa L., through a hydroponic experiment conducted on 9 cm Petri dishes. Leaf extracts of the two IPS can cause significant mono- and co-phytotoxicity. The mono- and co-phytotoxicity of the two IPS were concentration-dependent. The mono-phytotoxicity of S. canadensis was significantly increased with increasing invasion degree, but the opposite was true for the mono-phytotoxicity of B. pilosa. Leaf extracts of B. pilosa with light invasion caused stronger phytotoxicity than those of S. canadensis with light invasion. There may be an antagonistic effect for the co-phytotoxicity caused by mixed leaf extracts of the two IPS compared with those of either S. canadensis or B. pilosa. The phytotoxicity of the two IPS on the growth performance of neighboring plants may play a more important role in their mono-invasion than in their co-invasion. The phytotoxicity appeared to affect the growth performance of S. canadensis individuals more significantly when the invasion was heavy, while the growth performance of B. pilosa individuals seemed to be more influenced by phytotoxicity when the invasion was light. Consequently, the concentration of leaf extracts of IPS, the invasion degree of IPS, the species identity of IPS, and the species number of IPS modulated the mono- and co-phytotoxicity of the two IPS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10646-023-02716-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!