AI Article Synopsis

  • This study looked at how the vestibular system, which helps us know where we are in space, connects with different parts of the brain and affects things like memory and anxiety.
  • Researchers found that the vestibular system works with other brain areas for complex functions, not just balancing but also for emotions and perception.
  • We still have a lot to learn about how these brain networks work together, and using brain scans could help us understand more about our senses and how they interact.

Article Abstract

Purpose Of Review: The aim of this study was to illuminate the extent of the bilateral central vestibular network from brainstem and cerebellum to subcortical and cortical areas and its interrelation to higher cortical functions such as spatial cognition and anxiety.

Recent Findings: The conventional view that the main function of the vestibular system is the perception of self-motion and body orientation in space and the sensorimotor control of gaze and posture had to be developed further by a hierarchical organisation with bottom-up and top-down interconnections. Even the vestibulo-ocular and vestibulo-spinal reflexes are modified by perceptual cortical processes, assigned to higher vestibulo-cortical functions. A first comparative fMRI meta-analysis of vestibular stimulation and fear-conditioning studies in healthy participants disclosed widely distributed clusters of concordance, including the prefrontal cortex, anterior insula, temporal and inferior parietal lobe, thalamus, brainstem and cerebellum. In contrast, the cortical vestibular core region around the posterior insula was activated during vestibular stimulation but deactivated during fear conditioning. In recent years, there has been increasing evidence from studies in animals and humans that the central vestibular system has numerous connections related to spatial sensorimotor performance, memory, and emotion. The clinical implication of the complex interaction within various networks makes it difficult to assign some higher multisensory disorders to one particular modality, for example in spatial hemineglect or room-tilt illusion.

Summary: Our understanding of higher cortical vestibular functions is still in its infancy. Different brain imaging techniques in animals and humans are one of the most promising methodological approaches for further structural and functional decoding of the vestibular and other intimately interconnected networks. The multisensory networking including cognition and emotion determines human behaviour in space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10779454PMC
http://dx.doi.org/10.1097/WCO.0000000000001233DOI Listing

Publication Analysis

Top Keywords

central vestibular
12
sensorimotor control
8
cognition emotion
8
vestibular
8
brainstem cerebellum
8
higher cortical
8
vestibular system
8
vestibular stimulation
8
cortical vestibular
8
animals humans
8

Similar Publications

: The video head impulse test is a landmark in vestibular diagnostic methods to assess the high-frequency semicircular canal system. This test is well established in the adult population with immense research since its discovery. The usefulness and feasibility of the test in children is not very well defined, as research has been limited.

View Article and Find Full Text PDF

Background/objectives: The auditory middle-latency responses (AMLRs) assess central sensory processing beyond the brainstem and serve as a measure of sensory gating. They have clinical relevance in the diagnosis of neurological conditions. In this study, magnitude and habituation of the AMLRs were tested for sensitivity and specificity in classifying dizzy patients with vestibular migraine (VM) and post-concussive syndrome.

View Article and Find Full Text PDF

Background: Taylor and Palmer introduced an angiosome (vascular) concept in reconstructive plastic surgery in 1987. The angiosome is considered a segment of a nerve (cranial or peripheral nerve) supplied by a primary source of blood vessels.

Purpose: To observe the arteries supplying the vestibulocochlear nerves (VIII) from the brainstem till their termination.

View Article and Find Full Text PDF

Clinical spectrum of positional downbeat nystagmus: a diagnostic approach.

J Neurol

January 2025

Department of Neurology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL, 60637, USA.

Positional downbeat nystagmus (pDBN) is a common finding in dizzy patients, with etiologies ranging from benign paroxysmal positional vertigo (BPPV) to central vestibular lesions. Although peripheral pDBN often presents with distinct clinical features that differentiate it from BPPV, diagnosing its etiology can be challenging. A thorough clinical evaluation, including the physical characteristics of the nystagmus, response to positional maneuvers, and neurological findings, is often sufficient to diagnose conditions that provoke pDBN such as anterior canal BPPV, atypical posterior canal BPPV, and central causes.

View Article and Find Full Text PDF

Objectives: Apical root resorption and alveolar bone loss are potential complications associated with orthodontic treatment. This study aimed to assess apical root resorption and alveolar bone height following orthodontic treatment of moderate crowding with labial vs. lingual fixed appliances using CBCT imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!