Employing living cells as carriers to transport transition metal-based catalysts for target-specific bio-orthogonal catalysis represents a cutting-edge approach in advancing precision biomedical applications. One of the initial hurdles in this endeavor involves effectively attaching the catalysts to the carrier cells while preserving the cells' innate ability to interact with biological systems and maintaining the unaltered catalytic activity. In this study, we have developed an innovative layer-by-layer method that leverages a noncovalent interaction between cucurbit[7]uril and adamantane as the primary driving force for crafting polymeric nanostructures on the surfaces of these carrier cells. The strong binding affinity between the host-guest pair ensures the creation of a durable polymer coating on the cell surfaces. Meanwhile, the layer-by-layer process offers high adaptability, facilitating the efficient loading of bio-orthogonal catalysts onto cell surfaces. Importantly, the polymeric coating shows no discernible impact on the cells' physiological characteristics, including their tropism, migration, and differentiation, while preserving the effectiveness of the bio-orthogonal catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c10295 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!