Extensive vascular leakage and shock is a major cause of dengue-associated mortality. At present, there are no specific treatments available. Sphingolipid pathway is a key player in the endothelial barrier integrity; and is mediated through the five sphingosine-1-phosphate receptors (S1PR1-S1PR5). Signaling through S1PR2 promotes barrier disruption; and in Dengue virus (DENV)-infection, there is overexpression of this receptor. Fingolimod (FTY720) is a specific agonist that targets the remaining barrier-protective S1P receptors, without targeting S1PR2. In the present study, we explored whether FTY720 treatment can alleviate DENV-induced endothelial hyperpermeability. In functional assays, in both in vitro systems and in AG129 animal models, FTY720 treatment was found effective. Upon treatment, there was complete restoration of the monolayer integrity in DENV serotype 2-infected human microvascular endothelial cells (HMEC-1). At the molecular level, the treatment reversed activation of the S1P pathway. It significantly reduced the phosphorylation of the key molecules such as PTEN, RhoA, and VE-Cadherin; and also, the expression levels of S1PR2. In DENV2-infected AG129 mice treated with FTY720, there was significant improvement in weight gain, in overall clinical symptoms, and in survival. Whereas 100% of the DENV2-infected, untreated animals died by day-10 post-infection, 70% of the FTY720-treated animals were alive; and at the end of the 15-day post-infection observation period, 30% of them were still surviving. There was a significant reduction in the Evan's-blue dye permeability in the organs of FTY720-treated, DENV-2 infected animals; and also improvement in the hemogram, with complete restoration of thrombocytopenia and hepatic function. Our results show that the FDA-approved molecule Fingolimod (FTY720) is a promising therapeutic intervention in severe dengue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/iub.2795 | DOI Listing |
Epilepsia Open
December 2024
Department of Oncology, Affiliated Hospital of Jining Medical University, Jining City, China.
Epilepsy is one of the common chronic neurological diseases, affecting more than 70 million people worldwide. The brains of people with epilepsy exhibit a pathological and persistent propensity for recurrent seizures. Epilepsy often coexists with cardiovascular disease, cognitive dysfunction, depression, etc.
View Article and Find Full Text PDFPharmacol Res
December 2024
Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, N-0372 Oslo, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany; Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, LV-1004 Rīga, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, IL-6997801, Israel. Electronic address:
Huntington's disease (HD) is a debilitating neurodegenerative disorder characterized by severe motor deficits, cognitive decline and psychiatric disturbances. An early and significant morphological hallmark of HD is the activation of astrocytes triggered by mutant huntingtin, leading to the release of inflammatory mediators. Fingolimod (FTY), an FDA-approved sphingosine-1-phosphate (S1P) receptor agonist is used to treat multiple sclerosis (MS), a neuroinflammatory disease, and has shown therapeutic promise in other neurological conditions.
View Article and Find Full Text PDFCureus
November 2024
Division of Dental Anesthesiology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, JPN.
This study aims to explore the role of sphingosine-1-phosphate (S1P) in peripheral nerve regeneration after injury. S1P is a crucial metabolite involved in cell migration, inflammation, and nerve regeneration. In this research, six-week-old male Sprague-Dawley rats (total n=18) underwent transection of the inferior alveolar nerve (IAN) and were divided into three groups: S1PR agonist (FTY720) (n=6), saline control (n=6), and S1P1R antagonist (n=6).
View Article and Find Full Text PDFCytotherapy
November 2024
Department of Otolaryngology-Head and Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; Department of Otolaryngology, Children's Healthcare of Atlanta, Atlanta, Georgia, USA. Electronic address:
Background Aims: Oral wound healing involves hemostasis, inflammation, proliferation and tissue remodeling. The oral cavity is a complex wound healing environment because of the presence of saliva, a high bacterial burden and ongoing physical trauma from eating. The inflammatory component of wound healing balances the polarization of macrophages in healing tissues between M1 inflammatory macrophages and M2 anti-inflammatory macrophages.
View Article and Find Full Text PDFNanoscale
December 2024
Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
The burgeoning field of nano-bone regeneration is yet to establish a definitive optimal particle size for nanocarriers. This study investigated the impacts of nanocarrier's particle size on the bone regeneration efficacy of fingolimod (FTY720)-loaded nanoemulsions. Two distinct particle sizes (60 and 190 nm, designated as NF60 and NF190, respectively) were produced using low-energy and high-energy emulsion techniques, maintaining a consistent surfactant, co-surfactant, and oil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!