MTCC 1389 Augments Multi-stress Tolerance After Adaptation to Ethanol Stress.

Indian J Microbiol

Dairy Microbiology Division, ICAR- National Dairy Research Institute, Karnal, Haryana India.

Published: December 2023

During fermentation, yeast cells undergo various stresses that inhibit cell growth and ethanol production. Therefore, the ability to tolerate multiple stresses during fermentation is one of the important characteristics for yeast cells that can be used for commercial ethanol production. In the present study, we evaluated the multi-stress tolerance of parent and ethanol adapted MTCC1389 and their relative gene expression analysis. Multi-stress tolerance was confirmed by determining its cell viability, growth, and spot assay under oxidative, osmotic, thermal, and ethanol stress. During oxidative (0.8% HO) and osmotic stress (2 M NaCl), there was significant cell viability of 90% and 50%, respectively, by adapted strain. On the other hand, under 45 °C of thermal stress, the adapted strain was 80% viable while the parent strain was 60%. In gene expression analysis, the ethanol stress responsive gene ETP1 was significantly upregulated by 3.5 folds, the osmotic stress gene SLN1 was expressed by 3 folds, and the thermal stress responsive gene MSN2 was expressed by 7 folds. This study shows adaptive evolution for ethanol stress can develop other stress tolerances by changing relative gene expression of osmotic, oxidative, and thermal stress responsive genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10682345PMC
http://dx.doi.org/10.1007/s12088-023-01102-8DOI Listing

Publication Analysis

Top Keywords

ethanol stress
16
multi-stress tolerance
12
gene expression
12
thermal stress
12
stress responsive
12
stress
10
yeast cells
8
ethanol production
8
relative gene
8
expression analysis
8

Similar Publications

Experimental Evolution and Hybridization Enhance the Fermentative Capacity of Wild Saccharomyces eubayanus Strains.

FEMS Yeast Res

January 2025

Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile.

Lager beer is traditionally fermented using Saccharomyces pastorianus. However, the limited availability of lager yeast strains restricts the potential range of beer profiles. Recently, Saccharomyces eubayanus strains showed the potential to impart novel aromas to beer, with slower fermentation rates than commercial strains.

View Article and Find Full Text PDF

Objectives: Due to the increasingly faster pace of life and responsibilities, stress has become an integral part of daily life. Every year, numerous social campaigns in the media raise the issue of increasing alcohol consumption. Endometriosis is a chronic, causally incurable, estrogen-dependent and inflammatory gynecological disorder, described as presence of ectopic endometrial tissue outside the uterine cavity.

View Article and Find Full Text PDF

The non-native wood-boring and symbiotic fungus-culturing Xylosandrus germanus (Blandford) was first reported in New York apple orchards in 2013. Trapping surveys have been conducted annually since to assist growers in timely applications of preventative control measures. In 2021, a similar-looking introduced species, Anisandrus maiche (Kurentsov), was identified in traps in west central New York.

View Article and Find Full Text PDF

Quinoa, rich in pharmacologically active ingredients, possesses the potential benefit in preventing cognitive impairments induced by hypoxia. In this study, the efficacy of quinoa ethanol extracts (QEE) consumption (200 and 500 mg/kg/d, respectively) against hypobaric hypoxia (HH)-induced cognitive deficits in mice was investigated. QEE significantly ameliorated hypoxic stress induced by HH, as evidenced by improvements in baseline indices and reductions in hypoxia-inducible factor 1α levels.

View Article and Find Full Text PDF

Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!