Objective: The purpose of the invitro research was to compare the fit of Cobalt Chromium customized bar fabricated with different manufacturing processes cast metal bar, milled bar and 3D printed bar using scanning electron microscope.
Materials And Methods: Clear epoxy resin molds were prepared. In each mold two parallel implants with a 14 mm distance from each other were embedded. Thirty Co-Cr custom bars were constructed and were divided equally into three groups: Group (I) (Co-Cr conv), group (II) milled bar (Co-Cr milled), and group (III) printed bar (Co-Cr print). The marginal fit at implant-abutment interface was scanned using scanning electron microscope (SEM).
Results: There was a significant difference between the three studied groups regarding marginal misfit the between implant and fabricated bars with p-value < 0.001. The highest value of micro-gap distance was found in Co-Cr conventional group (7.95 ± 2.21 μm) followed by Co-Cr 3D printed group (4.98 ± 1.73) and the lower value were found in Co-Cr milled (3.22 ± 0.75).
Conclusion: The marginal fit of milled, 3D printed and conventional cast for Co-Cr alloy were within the clinically acceptable range of misfit. CAD/CAM milled Co-Cr bar revealed a superior internal fit at the implant-abutment interface. This was followed by selective laser melting (SLM) 3D printed bar and the least fit was shown for customized bar with the conventional lost wax technique.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688085 | PMC |
http://dx.doi.org/10.1186/s12903-023-03700-w | DOI Listing |
Nat Commun
January 2025
Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.
Ordered intermetallic alloys are renowned for their impressive mechanical, chemical, and physical properties, making them appealing for various fields. However, practical applications of them have long been severely hindered due to their severe brittleness and poor fabricability. It is difficult to fabricate such materials into components with complex geometries through traditional subtractive manufacturing methods.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
Metamaterials are pushing the limits of traditional materials and are fascinating frontiers in scientific innovation. Mechanical metamaterials (MMs) are a category of metamaterials that display properties and performances that cannot be realized in conventional materials. Exploring the mechanical properties and various aspects of vibration and damping control is becoming a crucial research area.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
Vibration sensors are integral to a multitude of engineering applications, yet the development of low-cost, easily assembled devices remains a formidable challenge. This study presents a highly sensitive flexible vibration sensor, based on the piezoresistive effect, tailored for the detection of high-dynamic-range vibrations and accelerations. The sensor's design incorporates a polylactic acid (PLA) housing with cavities and spherical recesses, a polydimethylsiloxane (PDMS) membrane, and electrodes that are positioned above.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink Writing (DIW) 3D printing for oil-water separation applications.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, CEMMPRE, University of Coimbra, 3030-788 Coimbra, Portugal.
The idea supporting the investigation of the current manuscript was to develop customized filters for air conditioners with different pore percentages and geometry with the additional advantage of presenting antibacterial performance. This property was expected due to the reinforcement of Cu nanoparticles in the polymeric matrix of poly(lactic acid) (PLA) and polyurethane (TPU). The filaments were characterized by their chemical composition, thermal and mechanical properties, and antibacterial behavior before and after processing by fused filament fabrication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!