Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, the fabrication of nanostructured GaN/porous Si by pulsed laser deposition (PLD) was demonstrated. The porous silicon was prepared using laser-assisted electrochemical etching (LAECE). The structural, optical, and electrical properties of GaN films were investigated as a function of laser fluence. XRD studies revealed that the GaN films deposited on porous silicon were nanocrystalline, exhibiting a hexagonal wurtzite structure along the (100) plane. Spectroscopic property results revealed that the photoluminescence PL emission peaks of the gallium nitride over porous silicon (GaN/PSi) sample prepared at 795 mJ/mm were centered at 260 nm and 624 nm. According to topographical and morphological analyses, the deposited film consisted of spherical grains with an average diameter of 178.8 nm and a surface roughness of 50.61 nm. The surface of the prepared films exhibited a cauliflower-like morphology. The main figures of merit of the nanostructured GaN/P-Si photodetectors were studied in the spectral range of 350-850 nm. The responsivity, detectivity, and external quantum efficiency of the photodetector at 575 nm under - 3 V were 19.86 A/W, 8.9 × 10 Jones, and 50.89%, respectively. Furthermore, the photodetector prepared at a laser fluence of 795 mJ/mm demonstrates a switching characteristic, where the rise time and fall time are measured to be 363 and 711 μs, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686998 | PMC |
http://dx.doi.org/10.1038/s41598-023-47955-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!