Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The near-room temperature thermoelectric properties of self-assembling ZnO nanowire networks before and after encapsulation in nonconductive polymers are studied. ZnO nanowire networks were synthesized via a two-step fabrication technique involving the deposition of metallic Zn networks by thermal evaporation, followed by thermal oxidation. Synthesized ZnO nanowire networks were encapsulated in polyvinyl alcohol (PVA) or commercially available epoxy adhesive. Comparison of electrical resistance and Seebeck coefficient of the ZnO nanowire networks before and after encapsulation showed a significant increase in the network's electrical conductivity accompanied by the increase of its Seebeck coefficient after the encapsulation. The thermoelectric power factor (PF) of the encapsulated ZnO nanowire networks exceeded the PF of bare ZnO networks by ~ 5 and ~ 185 times for PVA- and epoxy-encapsulated samples, respectively, reaching 0.85 μW m K and ZT ~ 3·10 at room temperature, which significantly exceeded the PF and ZT values for state-of-the-art non-conductive polymers based thermoelectric flexible films. Mechanisms underlying the improvement of the thermoelectrical properties of ZnO nanowire networks due to their encapsulation are discussed. In addition, encapsulated ZnO nanowire networks showed excellent stability during 100 repetitive bending cycles down to a 5 mm radius, which makes them perspective for the application in flexible thermoelectrics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687228 | PMC |
http://dx.doi.org/10.1038/s41598-023-48385-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!