Glucose, a primary fuel source under homeostatic conditions, is transported into cells by membrane transporters such as glucose transporter 1 (GLUT1). Due to its essential role in maintaining energy homeostasis, dysregulation of GLUT1 expression and function can adversely affect many physiological processes in the body. This has implications in a wide range of disorders such as Alzheimer's disease (AD) and several types of cancers. However, the regulatory pathways that govern GLUT1 expression, which may be altered in these diseases, are poorly characterized. To gain insight into GLUT1 regulation, we performed an arrayed CRISPR knockout screen using Caco-2 cells as a model cell line. Using an automated high content immunostaining approach to quantify GLUT1 expression, we identified more than 300 genes whose removal led to GLUT1 downregulation. Many of these genes were enriched along signaling pathways associated with G-protein coupled receptors, particularly the rhodopsin-like family. Secondary hit validation confirmed that removal of select genes, or modulation of the activity of a corresponding protein, yielded changes in GLUT1 expression. Overall, this work provides a resource and framework for understanding GLUT1 regulation in health and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687026 | PMC |
http://dx.doi.org/10.1038/s41598-023-48361-5 | DOI Listing |
Neuromolecular Med
January 2025
Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
Hypoxia is a significant stressor, and stabilized hypoxia-inducible factor-1α (HIF-1α) regulates the expression of numerous genes, leading to various biochemical, molecular, physiological and genomic changes. The body's oxygen-sensing system activates gene expression to protect brain tissues from hypoxia. Gamma-aminobutyric acid, an inhibitory neurotransmitter, regulates brain excitability during hypoxia through the activation of HIF-1 α.
View Article and Find Full Text PDFDev Comp Immunol
January 2025
College of Marine Sciences, South China Agricultural University, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China. Electronic address:
Singapore grouper iridovirus (SGIV) is a significant infectious disease in the grouper aquaculture industry. Currently, there is no effective drug available to prevent or treat SGIV. Oridonin (Ori) is a naturally occurring compound derived from Rabdosia rubescens, exhibiting various biological activities, including anti-tumor, anti-inflammatory, and antioxidant properties.
View Article and Find Full Text PDFJ Transl Autoimmun
June 2025
Department of Dermatology, University Medical Center Regensburg, 93042, Regensburg, Germany.
Cutaneous (CLE) and systemic lupus erythematosus (SLE) are autoimmune diseases with a multifactorial pathogenesis. Ultraviolet radiation (UVR) is the most important trigger of CLE; however, the degree of photosensitivity varies between the clinical subtypes. The expression of matrix metalloproteinases (MMPs)-important enzymes involved in skin turnover and homeostasis-is modulated by UVR.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, No.95 Zhongguancun East Road, Hai Dian District, Beijing, 100190, China.
Purpose: Precise tumor excision is important but challenging in breast-conserving surgery (BCS). Tumor-specific fluorescence imaging may be used for intraoperative tumor detection and, therefore, to guide precise tumor excision. The aims of this study are to develop a glucose transporter 1 (GLUT1)-targeted near-infrared fluorescence tracer and evaluate its accuracy for breast cancer detection using fresh surgical breast specimens.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
Background: Glucose deprivation inhibits T-cell metabolism and function. Glucose levels are low in the tumor microenvironment of solid tumors and insufficient glucose uptake limits the antitumor response of T cells. Furthermore, glucose restriction can contribute to the failure of chimeric antigen receptor T (CAR-T) cell therapy for solid tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!