Background: This study aimed to determine the effect of different carbohydrate (CHO) doses on exercise capacity in patients with McArdle disease-the paradigm of "exercise intolerance", characterized by complete muscle glycogen unavailability-and to determine whether higher exogenous glucose levels affect metabolic responses at the McArdle muscle cell (in vitro) level.

Methods: Patients with McArdle disease (n = 8) and healthy controls (n = 9) underwent a 12-min submaximal cycling constant-load bout followed by a maximal ramp test 15 min after ingesting a non-caloric placebo. In a randomized, double-blinded, cross-over design, patients repeated the tests after consuming either 75 g or 150 g of CHO (glucose:fructose = 2:1). Cardiorespiratory, biochemical, perceptual, and electromyographic (EMG) variables were assessed. Additionally, glucose uptake and lactate appearance were studied in vitro in wild-type and McArdle mouse myotubes cultured with increasing glucose concentrations (0.35, 1.00, 4.50, and 10.00 g/L).

Results: Compared with controls, patients showed the "classical" second-wind phenomenon (after prior disproportionate tachycardia, myalgia, and excess electromyographic activity during submaximal exercise, all p < 0.05) and an impaired endurance exercise capacity (-51% ventilatory threshold and -55% peak power output, both p < 0.001). Regardless of the CHO dose (p < 0.05 for both doses compared with the placebo), CHO intake increased blood glucose and lactate levels, decreased fat oxidation rates, and attenuated the second wind in the patients. However, only the higher dose increased ventilatory threshold (+27%, p = 0.010) and peak power output (+18%, p = 0.007). In vitro analyses revealed no differences in lactate levels across glucose concentrations in wild-type myotubes, whereas a dose-response effect was observed in McArdle myotubes.

Conclusion: CHO intake exerts beneficial effects on exercise capacity in McArdle disease, a condition associated with total muscle glycogen unavailability. Some of these benefits are dose dependent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116998PMC
http://dx.doi.org/10.1016/j.jshs.2023.11.006DOI Listing

Publication Analysis

Top Keywords

muscle glycogen
12
mcardle disease
12
exercise capacity
12
glycogen unavailability
8
patients mcardle
8
glucose concentrations
8
ventilatory threshold
8
peak power
8
power output
8
cho intake
8

Similar Publications

Nutritional Strategies for Enhancing Performance and Training Adaptation in Weightlifters.

Int J Mol Sci

December 2024

Institute of Health & Environment, Seoul National University, Seoul 08826, Republic of Korea.

Weightlifting demands explosive power and neuromuscular coordination in brief, repeated intervals. These physiological demands underscore the critical role of nutrition, not only in optimizing performance during competitions but also in supporting athletes' rigorous training adaptations and ensuring effective recovery between sessions. As weightlifters strive to enhance their performance, well-structured nutritional strategies are indispensable.

View Article and Find Full Text PDF

The prevalence of cardiovascular disease varies with sex, and the impact of intrinsic sex-based differences on vasculature is not well understood. Animal models can provide important insights into some aspects of human biology; however, not all discoveries in animal systems translate well to humans. To explore the impact of chromosomal sex on proteomic phenotypes, we used iPSC-derived vascular smooth muscle cells from healthy donors of both sexes to identify sex-based proteomic differences and their possible effects on cardiovascular pathophysiology.

View Article and Find Full Text PDF

Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading.

View Article and Find Full Text PDF

Very-low-carbohydrate diets (LCHF; <50g/day) have been debated for their potential to lower pre-exercise muscle and liver glycogen stores and metabolic efficiency, risking premature fatigue. It is also hypothesized that carbohydrate ingestion during prolonged exercise delays fatigue by increasing carbohydrate oxidation, thereby sparing muscle glycogen. Leveraging a randomized crossover design, we evaluated performance during strenuous time-to-exhaustion (70%⩒O) tests in trained triathletes following 6-week high-carbohydrate (HCLF, 380g/day) or very-low-carbohydrate (LCHF, 40g/day) diets to determine (i) if adoption of the LCHF diet impairs time-to-exhaustion performance, (ii) whether carbohydrate ingestion (10g/hour) 6-12x lower than current CHO fuelling recommendations during low glycogen availability (>15-hour pre-exercise overnight fast and/or LCHF diet) improves time-to-exhaustion by preventing exercise-induced hypoglycemia (EIH; <3.

View Article and Find Full Text PDF

: We aimed to assess the relationship among circulating extracellular vesicles (EVs), hypoxia-related proteins, and the conventional risk factors of life-threatening coronary artery disease (CAD) to find more precise novel biomarkers. : Patients were categorized based on coronary CT angiography. Patients with a Segment Involvement Score > 5 were identified as CAD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!