Ethnopharmacological Relevance: In China, Capparis spinosa L. fruits (CSF) are often used topically in Uyghur folk medicine in treating rheumatic diseases with remarkable efficacy. However, it has noticed severe skin irritation after a short time application with high dose of CSF, which limited long-term clinical use. To date, there is almost no research related to skin irritation of CSF.
Aim Of The Study: This study was intended to perform the first systematic assessment of morphological and histological changes in skin after stimulation with CSF. Furthermore, potential irritant components in CSF and related mechanisms were explored by in vitro transdermal techniques, network pharmacology, molecular docking, and experimental validation.
Materials And Methods: Skin changes after single and multiple stimulations with CSF were observed and subjected to skin irritation response scoring, irritation strength assessment, and histopathological analysis. In addition, in vitro transdermal technology, liquid chromatography-mass spectrometry (LC-MS) method, network pharmacology, molecular docking, and experimental validation were used to further exploit underlying skin irritant components and possible mechanisms of action.
Results: CSF induced significant morphological (erythema and edema) and histological (epidermal thickening and inflammatory infiltration) changes in skin of mice, which were similar to the clinical presentation of irritation contact dermatitis (ICD). The ethyl acetate fraction of CSF (CFEAF) was the main source of CSF-induced skin irritation. Kaempferol, flazin, and gallic acid were potential major irritant compounds. Moreover, CFEAF, kaempferol, flazin, and gallic acid could increase the levels of pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and interleukin-17A (IL-17A) to promote skin inflammation. The potential mechanism of CSF-induced skin irritation may be activation of the nuclear factor kappa-B (NF-κB) signaling pathway, including phosphorylation of NF-κB p65 (p65) and nuclear factor-kappa B inhibitor alpha (IκBα).
Conclusion: Kaempferol, flazin, and gallic acid are potential skin irritant components from CSF. Altogether, they induce skin irritation responses through promoting the release of the inflammatory factors TNF-α and ICAM-1, as well as activating the NF-κB signaling pathway. In addition, IL-17A may be an important pro-inflammatory factor in skin irritation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2023.117510 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!