Risk classification of low-lying coral reef islands and their exposure to climate threats.

Sci Total Environ

Marine Studies Institute, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; UNEP/GRID-Arendal, The University of Sydney, Sydney, NSW 2006, Australia.

Published: February 2024

AI Article Synopsis

  • The study focuses on how low-lying coral islands are responding to climate change, highlighting their varying vulnerabilities to rising sea levels, ocean acidification, and increased storm activity.
  • A risk-based classification system was developed to evaluate 56 coral islands based on eco-morphometric attributes and ocean conditions, categorizing them into five risk classes from Very Low to Very High.
  • The results showed that no islands were classified as Very Low risk, with a significant portion falling into the Moderate (60.7%) and High (19.6%) categories, particularly noting that smaller, low-elevation islands are most at risk.

Article Abstract

The bio-physical responses of low-lying coral islands to climate change are of concern. These islands exist across a broad range of bio-physical conditions, and vulnerabilities to rising and warming seas, ocean acidification and increased storminess. We propose a risk-based classification that scores 6 island eco-morphometric attributes and 6 bio-physical ocean/climate conditions from recent open-access data, to assign islands with respect to 5 risk classes (Very Low, Low, Moderate, High and Very High). The potential responses of 56 coral islands in Australia's jurisdiction (Coral Sea, NW Shelf and NE Indian Ocean) to climate change is considered with respect to their bio-physical attributes and eco-morphometrics. None of the islands were classed as Very Low risk, while 8 were classed as Low (14.3 %), 34 were Moderate (60.7 %), 11 were High (19.6 %), and 3 were Very High (5.4 %). Islands in the Very High risk class (located on the NW Shelf) are most vulnerable due to their small size (mean 10 Ha), low elevation (mean 2.6 m MSL), angular/elongated shape, unvegetated state, below average pH (mean 8.05), above average rates of sea-level rise (SLR; mean 4.6 mm/yr), isolation from other islands, and frequent tropical storms and marine heatwaves. In contrast, islands in the Low (and Very Low) risk class are less vulnerable due to their large size (mean 127 Ha), high elevation (mean 8.5 m MSL), sub-angular/round shape, vegetated state, near average pH (mean 8.06), near average SLR rates (mean 3.9 mm/yr), proximity to adjacent islands, and infrequent cyclones and marine heatwaves. Our method provides a risk matrix to assess coral island vulnerability to current climate change related risks and supports future research on the impacts of projected climate change scenarios. Findings have implications for communities living on coral islands, associated ecosystem services and coastal States that base their legal maritime zones on these islands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168787DOI Listing

Publication Analysis

Top Keywords

climate change
16
islands
12
coral islands
12
low-lying coral
8
low low
8
classed low
8
low risk
8
risk class
8
state average
8
marine heatwaves
8

Similar Publications

Introduction: Levels of plant-based aeroallergens are rising as growing seasons lengthen and intensify with anthropogenic climate change. Increased exposure to pollens could increase risk for mortality from respiratory causes, particularly among older adults. We determined short-term, lag associations of four species classes of pollen (ragweed, deciduous trees, grass pollen and evergreen trees) with respiratory mortality (all cause, chronic and infectious related) in Michigan, USA.

View Article and Find Full Text PDF

Background: Assessing the current status and identifying the mechanisms threatening endangered plants are significant challenges and fundamental to biodiversity conservation, particularly for protecting Tertiary relict trees and plant species with extremely small populations (PSESP). Ulmus elongata (Ulmus, Ulmaceae) with high values for the ornamental application, is a Tertiary relict tree species and one of the members from PSESP in China. Currently, the wild populations of U.

View Article and Find Full Text PDF

The southeastern region of Tibet, which serves as the primary concentration area for marine-type glaciers, has fostered a multitude of glacial lakes that are highly sensitive to global climate change. Glacial lakes play a crucial role in regulating the freshwater ecosystems of the region, but they also pose a significant threat to local infrastructure and populations due to flooding caused by glacial lake outbursts. Currently, a limited amount of research has focused on the monitoring and analysis of glacial lakes in southeastern Tibet.

View Article and Find Full Text PDF

Environmental gradients shape genetic variation in the desert moss, Syntrichia caninervis Mitt. (Pottiaceae).

Sci Rep

January 2025

Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr, Los Angeles, CA, 90032, USA.

The moss Syntrichia caninervis Mitt. is distributed throughout drylands globally, and often anchors ecologically significant communities known as biological soil crusts (biocrusts). The species occupies a variety of dryland habitats with varying levels of drought and temperature stress, suggesting the potential for ecological specialization within S.

View Article and Find Full Text PDF

The fishmeal is boon for aquaculture production in this recent pollution and climate change era. However, the demand of fishmeal is enhancing in many folds which needs to find alternative to fishmeal in cheap price. The present investigation addresses these issues with quinoa husk (QH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!