Engineering polysaccharide hydrolases in the product-releasing cleft to alter their product profiles.

Int J Biol Macromol

College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:

Published: January 2024

Polysaccharide hydrolases are enzymes capable of hydrolyzing polysaccharides to generate oligosaccharides that have diverse applications in the food, feed and pharmaceutical industries. However, the detailed mechanisms governing the compositions of their hydrolysates remain poorly understood. Previously, we identified a novel neopullulase Amy117, which exclusively converts pullulan to panose by specifically cleaving α-1,4-glycosidic bonds. Yet, several enzymes with high homology to Amy117 produce a mixture of glucose, maltose and panose during pullulan hydrolysis. To explore this particular phenomenon, we compared the sequences and structures between Amy117 and the maltose amylase ThMA, and identified a specific residue Thr299 in Amy117 (equivalent to His294 in ThMA) within the product-releasing cleft of Amy117, which might be responsible for this characteristic feature. Using structure-based rational design, we have successfully converted the product profiles of pullulan hydrolysates between Amy117 and ThMA by simply altering this key residue. Molecular docking analysis indicated that the key residue at the product-releasing outlet altered the product profile by affecting the panose release rate. Moreover, we modeled the long-chain pullulan substrate G8 to examine its potential conformations and found that G8 might undergo a conformational change in the narrow cleft that allows the Amy117 variant to specifically recognize α-1,6-glycosidic bonds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128416DOI Listing

Publication Analysis

Top Keywords

polysaccharide hydrolases
8
product-releasing cleft
8
product profiles
8
key residue
8
amy117
7
engineering polysaccharide
4
hydrolases product-releasing
4
cleft alter
4
alter product
4
profiles polysaccharide
4

Similar Publications

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Inflammation models with the proinflammatory cytokine interleukin-1β (IL-1β) are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis (OA). The aim of this study was to systematically analyze the influence of IL-1β in a 3D chondral pellet culture model. Bovine articular chondrocytes were cultured to passage 3 and then placed in pellet culture.

View Article and Find Full Text PDF

In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone.

View Article and Find Full Text PDF

PME12-mutated plants displayed altered stomatal characteristics and susceptibility to ABA-induced closure. Despite changes in PME activity, the mutant exhibited enhanced thermotolerance. These findings suggest a complex interplay between pectin methylesterification, ABA response, and stomatal function, contributing to plant adaptation to heat stress.

View Article and Find Full Text PDF

Although biologics have been revolutionizing the treatment of inflammatory bowel diseases (IBD) over the past decade, a significant number of patients still fail to benefit from these drugs. Overcoming the nonresponse to biologics is one of the top challenges in IBD treatment. In this study, we revealed that hyaluronan (HA), an extracellular matrix (ECM) component in the gut, is associated with nonresponsiveness to infliximab and vedolizumab therapy in patients with IBD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!