Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathways are required to be tightly controlled to initiate host innate immune responses. Fish mitochondrial antiviral signaling (mavs) is a key determinant in the RLR pathway, and its ubiquitination is associated with mavs activation. Here, we identified the zebrafish E3 ubiquitin ligase Speckle-type BTB-POZ protein (spop) negatively regulates mavs-mediated the type I interferon (IFN) responses. Consistently, overexpression of zebrafish spop repressed the activity of IFN promoter and reduced host ifn transcription, whereas knockdown spop by small interfering RNA (siRNA) transfection had the opposite effects. Accordingly, overexpression of spop dampened the cellular antiviral responses triggered by spring viremia of carp virus (SVCV). A functional domain assay revealed that the N-terminal substrate-binding MATH domain regions of spop were necessary for IFN suppression. Further assays indicated that spop interacts with mavs through the C-terminal transmembrane (TM) domain of mavs. Moreover, zebrafish spop selectively promotes K48-linked polyubiquitination and degradation of mavs through the lysosomal pathway to suppress IFN expression. Our findings unearth a post-translational mechanism by which mavs is regulated and reveal a role for spop in inhibiting antiviral innate responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128451DOI Listing

Publication Analysis

Top Keywords

zebrafish spop
12
degradation mavs
8
lysosomal pathway
8
spop
8
mavs
7
ifn
5
zebrafish
4
spop promotes
4
promotes ubiquitination
4
ubiquitination degradation
4

Similar Publications

Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) signaling pathways are required to be tightly controlled to initiate host innate immune responses. Fish mitochondrial antiviral signaling (mavs) is a key determinant in the RLR pathway, and its ubiquitination is associated with mavs activation. Here, we identified the zebrafish E3 ubiquitin ligase Speckle-type BTB-POZ protein (spop) negatively regulates mavs-mediated the type I interferon (IFN) responses.

View Article and Find Full Text PDF

SPOP the mutation.

Elife

October 2015

Department of Pharmacology, University of Colorado, Aurora, United States.

Prostate cancers with mutations to a protein called SPOP use an error-prone method to repair broken DNA strands.

View Article and Find Full Text PDF

Genomic instability is a fundamental feature of human cancer often resulting from impaired genome maintenance. In prostate cancer, structural genomic rearrangements are a common mechanism driving tumorigenesis. However, somatic alterations predisposing to chromosomal rearrangements in prostate cancer remain largely undefined.

View Article and Find Full Text PDF

Nanobody-targeted E3-ubiquitin ligase complex degrades nuclear proteins.

Sci Rep

September 2015

Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chunchon, 200-701, Republic of Korea.

Targeted protein degradation is a powerful tool in determining the function of specific proteins or protein complexes. We fused nanobodies to SPOP, an adaptor protein of the Cullin-RING E3 ubiquitin ligase complex, resulting in rapid ubiquitination and subsequent proteasome-dependent degradation of specific nuclear proteins in mammalian cells and zebrafish embryos. This approach is easily modifiable, as substrate specificity is conferred by an antibody domain that can be adapted to target virtually any protein.

View Article and Find Full Text PDF

A central question in Hedgehog (Hh) signaling is how evolutionarily conserved components of the pathway might use the primary cilium in mammals but not fly. We focus on Suppressor of fused (Sufu), a major Hh regulator in mammals, and reveal that Sufu controls protein levels of full-length Gli transcription factors, thus affecting the production of Gli activators and repressors essential for graded Hh responses. Surprisingly, despite ciliary localization of most Hh pathway components, regulation of Gli protein levels by Sufu is cilium-independent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!