Nickel oxide (NiO ) has garnered considerable attention as a prospective hole-transporting layer (HTL) in organic solar cells (OSCs), offering a potential solution to the stability challenges posed by traditional HTL, PEDOT:PSS, arising from acidity and hygroscopicity. Nevertheless, the lower work function (WF) of NiO relative to donor polymers reduces charge injection efficiency in OSCs. Herein, NiO nanoparticles are tailored through rare earth doping to optimize WF and the impact of ionic radius on their electronic properties is explored. Lanthanum (La ) and yttrium (Y ) ions, with larger ionic radii, are effectively doped at 1 and 3%, respectively, while scandium (Sc ), with a smaller ion radius, allows enhanced 5% doping. Higher doping ratios significantly enhance WF of NiO . A 5% Sc doping raises WF to 4.99 eV from 4.77 eV for neat NiO while maintaining high conductivity. Consequently, using 5% Sc-doped NiO as HTL improves the power conversion efficiency (PCE) of OSCs to 17.13%, surpassing the 15.64% with the neat NiO . Further enhancement to 18.42% is achieved by introducing the reductant catechol, outperforming the PEDOT:PSS-based devices. Additionally, when employed in a ternary blend system (D18:N3:F-BTA3), an impressive PCE of 19.18 % is realized, top-performing among reported OSCs utilizing solution-processed inorganic nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202310630 | DOI Listing |
Nat Commun
December 2024
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, China.
Catalytic upcycling of polyethylene terephthalate (PET) into high-value oxygenated products is a fascinating process, yet it remains challenging. Here, we present a one-step tandem strategy to realize the thermal catalytic oxidation upcycling of PET to terephthalic acid (TPA) and high-value glycolic acid (GA) instead of ethylene glycol (EG). By using the Au/NiO with rich oxygen vacancies as catalyst, we successfully accelerate the hydrolysis of PET, accompanied by obtaining 99% TPA yield and 87.
View Article and Find Full Text PDFChemosphere
December 2024
Universidad Autónoma de Chile, Chile.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology, National Engineering Research Center of Wide Band-Gap Semiconductor, School of Microelectronics, Xidian University, Xi'an 710071, China.
This study systematically investigates the effects of anode metals (Ti/Au and Ni/Au) with different work functions on the electrical and temperature characteristics of β-GaO-based Schottky barrier diodes (SBDs), junction barrier Schottky diodes (JBSDs) and P-N diodes (PNDs), utilizing Silvaco TCAD simulation software, device fabrication and comparative analysis. From the perspective of transport characteristics, it is observed that the SBD exhibits a lower turn-on voltage and a higher current density. Notably, the V of the Ti/Au anode SBD is merely 0.
View Article and Find Full Text PDFWater Res
December 2024
Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
Metol (MTO), a commonly used photographic developer, has become an environmental pollutant due to its extensive use and subsequent release into water sources. The accumulation of MTO poses significant risks, including aquatic toxicity and potential bioaccumulation, leading to adverse effects on ecosystems. To address these environmental challenges, we developed a La₂NiO combined with graphene oxide (La₂NiO₄@GO) nanocomposite modified glassy carbon electrode (GCE) for the ultrasensitive detection of MTO.
View Article and Find Full Text PDFMicron
December 2024
University of Science and Technology of China, Hefei 230026, China; Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China. Electronic address:
The Stabilization of bubble magnetic textures in zero magnetic field has garnered significant attention due to its potential application in spintronic devices. Herein, we employed a home-built rotatable magnetic force microscopy (MFM) to observe the evolution of magnetic domains in NiO/Ni/Ti thin films. Magnetic stripe domains decay into isolated magnetic bubbles under an out-of-plane magnetic field at 100 K, and magnetic stripes reappear when the external magnetic field is reduced to zero.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!