Boundary uncertainty aware network for automated polyp segmentation.

Neural Netw

National-Reginoal Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.

Published: February 2024

Recently, leveraging deep neural networks for automated colorectal polyp segmentation has emerged as a hot topic due to the favored advantages in evading the limitations of visual inspection, e.g., overwork and subjectivity. However, most existing methods do not pay enough attention to the uncertain areas of colonoscopy images and often provide unsatisfactory segmentation performance. In this paper, we propose a novel boundary uncertainty aware network (BUNet) for precise and robust colorectal polyp segmentation. Specifically, considering that polyps vary greatly in size and shape, we first adopt a pyramid vision transformer encoder to learn multi-scale feature representations. Then, a simple yet effective boundary exploration module (BEM) is proposed to explore boundary cues from the low-level features. To make the network focus on the ambiguous area where the prediction score is biased to neither the foreground nor the background, we further introduce a boundary uncertainty aware module (BUM) that explores error-prone regions from the high-level features with the assistance of boundary cues provided by the BEM. Through the top-down hybrid deep supervision, our BUNet implements coarse-to-fine polyp segmentation and finally localizes polyp regions precisely. Extensive experiments on five public datasets show that BUNet is superior to thirteen competing methods in terms of both effectiveness and generalization ability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2023.11.050DOI Listing

Publication Analysis

Top Keywords

polyp segmentation
16
boundary uncertainty
12
uncertainty aware
12
aware network
8
colorectal polyp
8
boundary cues
8
boundary
6
polyp
5
segmentation
5
network automated
4

Similar Publications

: Timely detection and removal of colonic adenomas are critical for preventing colorectal cancer. : This study analyzed differences in colonic adenoma characteristics based on colonoscopy history by reviewing the medical records of 14,029 patients who underwent colonoscopy between January and June 2020 across 40 primary medical institutions in Korea. : Adenoma and advanced neoplasia characteristics varied significantly with colonoscopy history ( < 0.

View Article and Find Full Text PDF

The detection and excision of colorectal polyps, precursors to colorectal cancer (CRC), can improve survival rates by up to 90%. Automated polyp segmentation in colonoscopy images expedites diagnosis and aids in the precise identification of adenomatous polyps, thus mitigating the burden of manual image analysis. This study introduces FocusUNet, an innovative bi-level nested U-structure integrated with a dual-attention mechanism.

View Article and Find Full Text PDF

G-SET-DCL: a guided sequential episodic training with dual contrastive learning approach for colon segmentation.

Int J Comput Assist Radiol Surg

January 2025

Computer Vision and Image Processing Lab., UofL, Louisville, KY, 40292, USA.

Purpose: This article introduces a novel deep learning approach to substantially improve the accuracy of colon segmentation even with limited data annotation, which enhances the overall effectiveness of the CT colonography pipeline in clinical settings.

Methods: The proposed approach integrates 3D contextual information via guided sequential episodic training in which a query CT slice is segmented by exploiting its previous labeled CT slice (i.e.

View Article and Find Full Text PDF

Machine learning of endoscopy images to identify, classify, and segment sinonasal masses.

Int Forum Allergy Rhinol

January 2025

Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA.

Background: We developed and assessed the performance of a machine learning model (MLM) to identify, classify, and segment sinonasal masses based on endoscopic appearance.

Methods: A convolutional neural network-based model was constructed from nasal endoscopy images from patients evaluated at an otolaryngology center between 2013 and 2024. Images were classified into four groups: normal endoscopy, nasal polyps, benign, and malignant tumors.

View Article and Find Full Text PDF

MEFA-Net: A mask enhanced feature aggregation network for polyp segmentation.

Comput Biol Med

December 2024

Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing, College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China; Engineering Research Center of Big Data Intelligence, Ministry of Education, Fuzhou 350116, China. Electronic address:

Accurate polyp segmentation is crucial for early diagnosis and treatment of colorectal cancer. This is a challenging task for three main reasons: (i) the problem of model overfitting and weak generalization due to the multi-center distribution of data; (ii) the problem of interclass ambiguity caused by motion blur and overexposure to endoscopic light; and (iii) the problem of intraclass inconsistency caused by the variety of morphologies and sizes of the same type of polyps. To address these challenges, we propose a new high-precision polyp segmentation framework, MEFA-Net, which consists of three modules, including the plug-and-play Mask Enhancement Module (MEG), Separable Path Attention Enhancement Module (SPAE), and Dynamic Global Attention Pool Module (DGAP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!