Background And Aim: Regenerative endodontic procedures (REPs) are oriented by the principles of tissue engineering, incorporating dental pulp stem cells (DPSC), crucial growth factors like Transforming growth factor-β (TGF-β1), and scaffolds to facilitate the regeneration of dental pulp tissues. The present study aimed to investigate the effect of photobiomodulation (PBM) therapy, using an 808 nm diode laser on cellular modulation mechanisms in REPs.

Method And Material: A total of 108 human dentin discs obtained from intact single root teeth were randomly assigned into six groups (n = 8): 1. Positive control (EDTA), 2. PBM-1 (3 J/cm), 3. PBM-2 (5 J/cm), 4. EDTA+PBM-1, 5. EDTA+PBM-2, and 6. Negative control (NaOCl). Then, an extract solution was prepared from each disc and the concentration of released TGF-β1 from the discs was measured using enzyme-linked immunosorbent assay (ELISA). Moreover, the extract solution was added to DPSC culture medium to evaluate cell viability and migration through MTT assay and scratch test, respectively.

Result: The group exposed to PBM-1 showed the highest cell viability, while treatment with EDTA and EDTA+PBM-2 decreased cellular viability. Also, the PBM-treated groups showed significantly higher release of TGF-β1 compared to the negative control. EDTA and EDTA+PBM-1 showed the highest release among all the groups. No significant difference was found between EDTA and EDTA+PBM-1, as well as between PBM-1 and PBM-2. Moreover, the PBM-1 group exhibited the highest migration after 24 h, which was significantly greater than other groups, except for the PBM-2 group.

Conclusion: According to the obtained data, 808 nm mediated-PBM (3 J/cm2), both independently and in conjunction with EDTA, enhanced the release of TGF-β1 from dentin and improved cell viability and migration of DPSCs. It seems that, PBM under the specific parameters employed in this study, could be an effective adjunctive therapy in REPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2023.112817DOI Listing

Publication Analysis

Top Keywords

dental pulp
12
cell viability
12
pulp stem
8
stem cells
8
control edta
8
negative control
8
extract solution
8
viability migration
8
release tgf-β1
8
edta edta+pbm-1
8

Similar Publications

The Aim Of The Study: Was to determine the risk factors for pulp necrosis and external inflammatory resorption in children with permanent teeth trauma.

Materials And Methods: The study involved 68 pediatric patients aged 6 to 16 years (mean age 10.9±2.

View Article and Find Full Text PDF

Human teeth serves as a potential reservoir for postembryonic mesenchymal dental stem cells. Researchers have identified and isolated seven types of dental stem cells from pulp and periodontal ligament tissues. These cells have a wide range of clinical applications across the fields of medicine and dentistry due to their increased proliferative nature.

View Article and Find Full Text PDF

Antimicrobial efficacy of alternative root canal disinfection strategies: An evaluation on multiple working models.

Biomed Pharmacother

January 2025

Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB - USP), Bauru, São Paulo, Brazil. Electronic address:

Researching disinfection strategies is pivotal because effectively eliminating bacteria and their byproducts during root canal treatment (RCT) remains a challenge. This study investigated the antimicrobial efficacy of natural antimicrobial compounds, propolis (PRO) and copaiba oil-resin (COR), compared to conventional agents in Endodontics. Antimicrobials were tested against endodontic pathogens via macrodilution with standardized inoculums to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC).

View Article and Find Full Text PDF

Evaluation of bacterial biofilm, smear layer, and debris removal efficacy of a hydro-dynamic cavitation system with physiological saline using a new ex vivo model: a CLSM and SEM study.

BMC Oral Health

January 2025

Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.

Introduction: To evaluate the bacterial biofilm, smear layer and debris removal efficacy of a hydro-dynamic cavitation system with physiological saline using a new ex vivo model.

Methods: Seventy-five dentin discs were prepared from fifty-four extracted teeth. Seventy-five artificial root sockets were prepared.

View Article and Find Full Text PDF

Introduction: Eradication of residual biofilm from root canal dentine is critical for the success of regenerative endodontic procedures (REPs).

The Aim Of The Study: To evaluate the influence of ultrasonically activated irrigants in concentrations used for REPs for removal of dual-species biofilm from three-dimensionally printed tooth models with attached dentine samples.

Methodology: Seventy-two three-dimensionally printed teeth models were fabricated with a standardized slot in the apical third of the root to ensure a precise fit with a human root dentine specimen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!