As an important chemical raw material, hydrazine brings convenience to people's lives and provides opportunities for human development. However, the misuse or leakage of hydrazine has brought pollution to the environment, including water, soil and living organisms. At the same time, hydrazine poses a potential threat to human health as a carcinogen. Despite the enormous challenges, it is crucial to develop an effective method to detect hydrazine in environmental samples. In this work, we have synthesized a series of probes based on phenothiazine fluorophore by the introduction of different substituents and developed a novel probe for the detection of hydrazine. The probe is capable of detecting hydrazine in aqueous solutions with high sensitivity and selectivity, and can be easily fabricated into paper test strips for use in in situ samples. In addition, the probe is effective in detecting hydrazine in water, soil, cells, and zebrafish, providing an excellent tool for detecting hydrazine in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.125448 | DOI Listing |
Redox Biol
January 2025
Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China; College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, China. Electronic address:
Accurate and selective techniques for visualizing endogenous peroxynitrite (ONOO) in cerebral ischemia-reperfusion injury (CIRI) models are essential for understanding its complex pathological processes. Here, we introduced a longwave fluorescent probe TJO for detecting ONOO rapidly and sensitively, with a low detection limit of 91 nM. Furthermore, TJO exhibits excellent fluorescence imaging capabilities, enabling detailed visualization of ONOO⁻ in CIRI mice model.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia.
Background: Early and accurate diagnosis of drug resistance, including resistance to second-line anti-tuberculosis (TB) drugs, is crucial for the effective control and management of pre-extensively drug-resistant TB (pre-XDR-TB) and extensively drug-resistant TB (XDR-TB). The Xpert MTB/XDR assay is the WHO recommended method for detecting resistance to isoniazid and second-line anti-TB drugs when rifampicin resistance is detected. Currently, the Xpert MTB/XDR assay is not yet implemented in Ethiopia, thus the MTBDRsl assay continues to be used.
View Article and Find Full Text PDFIn this research, we report a simple fluorescent probe designed to detect thallium(iii) ions (Tl) in artificial urine samples. The Tl signaling probe (TP-1) was readily prepared from 2-acetyl-6-methoxynaphthalene and hydrazine. In a pH 4.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China.
Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Chemistry, National Institute of Technology Calicut, Kerala 673601, India. Electronic address:
Hydrazine (NH) and hydrogen sulfide (HS) are environmental contaminants that adversely affect human health. Fluorescence-based detection methods for these analytes utilize their nucleophilicity and reducing ability. Therefore, fluorescent sensors capable of detecting and distinguishing hydrazine and HS are highly beneficial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!