Magnetic graphene oxide nanocomposites induce cytotoxicity in ADSCs via GPX4 regulating ferroptosis.

Ecotoxicol Environ Saf

Hospital of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China. Electronic address:

Published: January 2024

Magnetic graphene oxide nanocomposites (MGO NPs) have been widely studied in biomedical applications. However, their cytotoxicity and underlying mechanisms remain unclear. In this study, the biosafety of MGO NPs was investigated, and the mechanism involved in ferroptosis was further explored. MGO can produce cytotoxicity in ADSCs, which is dependent on their concentration. Ferroptosis was involved in MGO NP-induced ADSC survival inhibition by increasing total ROS and lipid ROS accumulation as well as regulating the expression levels of ferroptosis-related genes and proteins. GPX4 played a critical role in the MGO NP-induced ADSC ferroptosis process, and overexpressing GPX4 suppressed ferroptosis to increase cell survival. This study provides a theoretical basis for the biosafety management of MGO NPs used in the field of biomedical treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2023.115745DOI Listing

Publication Analysis

Top Keywords

mgo nps
12
magnetic graphene
8
graphene oxide
8
oxide nanocomposites
8
cytotoxicity adscs
8
mgo np-induced
8
np-induced adsc
8
mgo
6
ferroptosis
5
nanocomposites induce
4

Similar Publications

A novel method for synthesizing nanomaterials involves microbial or phytochemical nano-factories, which offer an eco-friendly, cost-effective, and reliable approach to producing clean and reproducible products. In this study, magnesium oxide nanoparticles (MgO NPs) were synthesized using Avicennia marina, a marine plant, as both a nucleation and stabilizing agent. The MgO NPs were characterized for crystallinity, cut-off wavelength, morphology, thermal stability, and surface properties using XRD, EDX, BET, UV-Visible spectroscopy, DLS, zeta potential analysis, SEM, TEM, TGA/DTA, and PL spectroscopy.

View Article and Find Full Text PDF

Efficient Control of Head Blight and Reduction of Deoxynivalenol Accumulation by a Novel Nanopartner-Based Strategy.

Environ Sci Technol

January 2025

State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Chemical control of head blight (FHB) in wheat plants is often challenged by the resistance outbreak and deoxynivalenol (DON) accumulation. Developing green partners for fungicides is crucial for reducing fungal growth, mycotoxin contamination, and agricultural fungicides input. Herein, we investigated the mechanism of MgO nanoparticles (NPs) in controlling FHB.

View Article and Find Full Text PDF

(neem) extract was used to biologically synthesize magnesium oxide nanoparticles (MgO NPs). The synthesized NPs were characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and UV-vis spectroscopy. Antioxidant, anticancer, antibacterial, antidiabetic, and anti-inflammatory activities were analyzed for the synthesized MgO NPs and neem extract.

View Article and Find Full Text PDF

The harmful influence caused by cadmium (Cd) to agriculture is severe and enduring. Efforts to reduce the damage by Cd to crop is an important topic. In this study, we investigated the effect of MgO NPs on tobacco seedlings' growth under Cd stress and explored its mechanism.

View Article and Find Full Text PDF
Article Synopsis
  • * Both spinach varieties experienced similar negative effects from Cd exposure, which included reduced growth and physiological functions, while biochemical markers like malondialdehyde and hydrogen peroxide levels increased.
  • * Foliar treatments enhanced growth and gas exchange metrics and mitigated the negative biochemical effects of Cd; Desi Palak responded best to MgO-NPs, whereas Lahori Palak thrived under the combined SNP and MgO-NP treatment, suggesting potential remedies for heavy metal stress
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!