Due to the limitations of traditional ultraviolet (UV) in microbial inactivation in water, it is necessary to explore a more suitable and efficient UV disinfection method. In this study, an electron beam excitation multi-wavelength ultraviolet (EBE-MW-UV) system was established and aims to analyze its differential microbial inactivation capabilities in comparison to single-wavelength UV-LEDs in waterborne applications. Furthermore, the inactivation mechanisms of this system on microorganisms were explored. The results showed that EBE-MW-UV had significantly higher inactivation effects on the Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Candida albicans in water compared to UV-LEDs (p<0.05), and the inactivation effect of EBE-MW-UV on Escherichia coli and Pseudomonas aeruginosa at the same UV dose was 3.8 and 1.9 log higher than that of UV-LEDs, respectively, EBE-MW-UV exhibited better inactivation effects on Gram-negative bacteria. Further research found that, under the majority of irradiation doses, neither EBE-MW-UV nor UV-LEDs were significantly affected by the concentration of suspended solids (5 and 20 mg/L) or humic acids (2 and 5 mg/L) in the water. Mechanism analysis revealed that during the disinfection process of EBE-MW-UV, microbial DNA and proteins were initially damaged, which prevented the occurrence of dark repair and led to bacterial inactivation. In addition, UV irradiation led to the production of additional reactive oxygen species (ROS) inside the cells, increasing cell membrane permeability and exacerbating membrane damage. This was accompanied by a decrease in energy metabolism and depletion of ATP, ultimately resulting in microbial inactivation. Therefore, EBE-MW-UV demonstrated more effective disinfection than single-wavelength UV-LEDs, showing great potential. Our research gives new insights into the characteristics of multiple wavelength ultraviolet, and provides scientific basis for the selection of new light sources in the field of ultraviolet disinfection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119597DOI Listing

Publication Analysis

Top Keywords

microbial inactivation
12
inactivation
9
electron beam
8
beam excitation
8
excitation multi-wavelength
8
multi-wavelength ultraviolet
8
single-wavelength uv-leds
8
inactivation effects
8
escherichia coli
8
coli pseudomonas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!