Background: Malaria, a widespread parasitic disease caused by Plasmodium species, remains a significant global health concern. Rapid and accurate detection, as well as species genotyping, are critical for effective malaria control.
Methods: We have developed a Flexible, Robust, Equipment-free Microfluidic (FREM) platform, which integrates recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats (CRISPR)-based detection, enabling simultaneous malaria infection screening and Plasmodium species genotyping. The microfluidic chip enabled the parallel detection of multiple Plasmodium species, each amplified by universal RPA primers and genotyped by specific crRNAs. The inclusion of a sucrose solution effectively created spatial separation between the RPA and CRISPR assays within a one-pot system, effectively resolving compatibility issues.
Findings: Clinical assessment of DNA extracts from patients with suspected malaria demonstrates the FREM platform's superior sensitivity (98.41%) and specificity (92.86%), yielding consistent results with PCR-sequencing for malaria detection, which achieved a positive predictive agreement of 98.41% and a negative predictive agreement of 92.86%. Additionally, the accuracy of species genotyping was validated through concordance rates of 90.91% between the FREM platform and PCR-sequencing.
Interpretation: The FREM platform offers a promising solution for point-of-care malaria screening and Plasmodium species genotyping. It highlights the possibility of improving malaria control efforts and expanding its applicability to address other infectious diseases.
Funding: This work was financially supported by International Joint Laboratory on Tropical Diseases Control in Greater Mekong Subregion, National Natural Science Foundation of China, the Natural Science Foundation of Shanghai, Bill & Melinda Gates Foundation and National Research and Development Plan of China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10697993 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2023.104898 | DOI Listing |
J Infect
December 2024
Program in Biology, Division of Science, New York University Abu Dhabi; Abu Dhabi, UAE; Center for Genomics and Systems Biology; New York University Abu Dhabi, Abu Dhabi, UAE. Electronic address:
Background: Shifts in dietary patterns during lifestyle transitions are integral components of the dynamic interactions between humans and their environments. Investigating the link between dietary diversity, the composition of the human lipidome and infection is key to understanding the interplay between diet and susceptibility to pathogens.
Methods: Here we address this question by performing a comparative study of two ethnic groups with divergent dietary patterns: Fulani, who are nomad pastoralists with a dairy-centric diet, and Mossi, who are farmers with a plant-based diet.
Am J Trop Med Hyg
December 2024
Department of Pathogenic Biology, Basic Medical College, Naval Medical University, Shanghai, China.
Rapidly identifying Anopheles-carrying malaria parasites is crucial for imported malaria prevention. However, suitable methods still lack quick detection in limited-resource situations. In this study, disc microfluidic isothermal amplification integrating loop-mediated isothermal amplification (LAMP) and microfluidic chip technology were applied to develop rapid and precise detection with low resource requirements.
View Article and Find Full Text PDFParasitol Int
December 2024
Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan. Electronic address:
Through studies of new antimalarial drugs, we identified 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) as a potential drug candidate. Here, we analyzed the antimalarial action of a transdermal formulation (td) of N-89, designed for easy use by children, using Plasmodium berghei-infected mice as a model for malaria patients.
View Article and Find Full Text PDFPLOS Glob Public Health
December 2024
Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
Knowing when and where infected mosquitoes bite is required for estimating accurate measures of malaria risk, assessing outdoor exposure, and designing intervention strategies. This study combines secondary analyses of a human behaviour survey and an entomological survey carried out in the same area to estimate human exposure to malaria-infected Anopheles mosquitoes throughout the night in rural villages in south-eastern Tanzania. Mosquitoes were collected hourly from 6PM to 6AM indoors and outdoors by human landing catches in 2019, and tested for Plasmodium falciparum sporozoite infections using ELISA.
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Cell Biology, University of Bern, Bern, Switzerland.
Malaria caused by Plasmodium parasites remains a large health burden. One approach to combat this disease involves vaccinating individuals with whole sporozoites that have been genetically modified to arrest their development at a specific stage in the liver by targeted gene deletion, resulting in a genetically attenuated parasite (GAP). Through a comprehensive phenotyping screen, we identified the hscb gene, encoding a putative iron-sulfur protein assembly chaperone, as crucial for liver stage development, making it a suitable candidate gene for GAP generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!