Nerve rehabilitation following nerve injury or surgery at the wrist level is a lengthy process during which not only peripheral nerves regrow towards receptors and muscles, but also the brain undergoes plastic changes. As a result, at the time when nerves reach their targets, the brain might have already allocated some of the areas within the somatosensory cortex that originally processed hand signals to some other regions of the body. The aim of this study is to show that it is possible to evoke a variety of somatotopic sensations related to the hand while stimulating proximally to the injury, therefore, providing the brain with the relevant inputs from the hand regions affected by the nerve damage.This study included electrical stimulation of 28 able-bodied participants where an electrode that acted as a cathode was placed above the Median nerve at the wrist level. The parameters of electrical stimulation, amplitude, frequency, and pulse shape, were modulated within predefined ranges to evaluate their influence on the evoked sensations.Using this methodology, the participants reported a wide variety of somatotopic sensations from the hand regions distal to the stimulation electrode.Furthermore, to propose an accelerated stimulation tuning procedure that could be implemented in a clinical protocol and/or standalone device for providing meaningful sensations to the somatosensory cortex during nerve regeneration, we trained machine-learning techniques using the gathered data to predict the location/area, naturalness, and sensation type of the evoked sensations following different stimulation patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ad10d0DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
12
wrist level
12
median nerve
8
nerve wrist
8
somatosensory cortex
8
variety somatotopic
8
somatotopic sensations
8
sensations hand
8
hand regions
8
stimulation
6

Similar Publications

Background: Lipopolysaccharide (LPS)-induced apoptosis of lung microvascular endothelial cells (ECs) is the main reason of lung edema and acute lung injury (ALI) in septic conditions. Telocytes (TCs) are a distinct type of interstitial cells found around the lung microvasculature, which may protect ECs through the release of shed vesicles. However, whether TCs protect against LPS-induced EC apoptosis and ALI has not been determined.

View Article and Find Full Text PDF

Neuromuscular electrical stimulation producing low evoked force elicits the repeated bout effect on muscle damage markers of the elbow flexors.

Sports Med Health Sci

March 2025

Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, 74075, USA.

This study examined the repeated bout effect (RBE) on muscle damage markers following two bouts of neuromuscular electrical stimulation (NMES) in untrained individuals. Following familiarization, participants received 45 consecutive NMES to the biceps brachii at an intensity that produced low evoked force for the elbow flexors. Muscle damage markers (maximal voluntary isometric contraction [MVIC], elbow range of motion [ROM], muscle soreness via visual analogue scale [VAS] scores, pressure pain threshold [PPT], and muscle thickness) were measured before (PRE), after (POST), 1 day after (24 POST), and 2 days after (48 POST) NMES.

View Article and Find Full Text PDF

Background: Quadriceps weakness is a common barrier to effective rehabilitation after anterior cruciate ligament (ACL) surgery. Neuromuscular electrical stimulation (NMES)-the application of electrical currents to induce muscle contraction-has been used as part of the postoperative rehabilitation regimen.

Purpose: To investigate the effects of NMES on the recovery of quadriceps strength and knee function after ACL surgery.

View Article and Find Full Text PDF

Aim: The aim of the present study was to comparatively evaluate the retention of complete dentures and oral health-related quality of life (OHRQoL) of patients with conventional and bioelectric impressions or transcutaneous electric nerve stimulation (TENS).

Materials And Methods: A total of thirty (n = 30) completely edentulous patients were randomly distributed into two groups: Group-C (n = 15) (Conventional) and Group-T (n = 15) (bioelectric). In Group C, border molding was performed using the manual manipulation of borders, and the final impression was made using zinc-oxide eugenol.

View Article and Find Full Text PDF

Temporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, noninvasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and nonclinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. To inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!