To reduce the adverse physical effects on the oral mucosa caused by excessive hardness of betel nut fibers, steam explosion was used to soften betel nuts. The effect of three operating parameters (pressure holding time, explosion pressure, and initial moisture content) on the morphology, texture, and chemical composition of the betel nuts was investigated. The fiber hardness and Shore hardness decreased by 56.17%-89.28% and 7.03%-34.29%, respectively, and the transverse tensile strength and fiber tensile strength also decreased by up to 60.72% and 24.62%, respectively. Moreover, the coefficient of static friction and moisture content increased. After steam explosion, the betel nut increased in transverse diameter, became darker and more yellow-red in color, and showed a damaged microstructure. The contents of free phenol and alkaloids decreased after steam explosion treatment, with free phenols and total alkaloids decreasing from 34.32 mg(GAE)/g and 7.84 mg/g to 21.58 mg(GAE)/g and 6.50 mg/g, respectively, after the A-50 s treatment condition. The steam explosion increased the quantity of phenols, alkaloids, and soluble solids released from the betel nut under the same simulated release conditions of the texture analyzer. The research also showed that increased pressure holding time and explosion pressure enhanced the explosion efficiency, while the initial moisture content was reduced the explosion efficiency. Therefore, steam explosion is an effective pretreatment approach to soften betel nut and facilitate healthy development of the betel nut industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jtxs.12809 | DOI Listing |
Polymers (Basel)
January 2025
Laboratory of Physical Chemistry of Materials (LCPM), Campus Fanar, Faculty of Sciences II, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon.
Increasing the flame retardancy of lignocellulosic materials such as × can effectively enable their wide use. This study examines the fireproofing process of Miscanthus particles using an eco-friendly process by grafting phytic acid and urea in aqueous solution. Miscanthus particles underwent a steam explosion step before being grafted.
View Article and Find Full Text PDFFood Res Int
February 2025
Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo, Ningbo 315100, China. Electronic address:
Xylooligosaccharides (XOS), short-chain polymers with prebiotic properties, have gained significant commercial attention over the past few decades due to their potential as nutraceutical components. Derived from lignocellulosic biomass (LCB), XOS serve as health promoting compounds with applications across multiple sectors, including food pharmaceutical and cosmetic. This comprehensive review provides an overview of XOS production, purification, characterization, and quantification, highlighting their derivation from various sources such as agricultural waste, agro-economical forest residues, and nutrient-dense energy crops.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China.
Energetic materials often possess different polymorphs that exhibit distinguishable performances. As a typical energetic material, hexanitrohexaazaisowurtzitane (CL-20 or HNIW) is one of the most powerful explosives nowadays. Phase transition of CL-20 induced by ubiquitous water vapor leading to an increase in sensitivity and a decrease in energy level is a key bottleneck that limits the widespread application of CL-20-based explosives.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science and Technology, Hebei Agricultural University, Baoding, China. Electronic address:
In this study, steam explosion (SE) was applied to produce Xuehua pear soup (XPS) at different steam explosion pressure. The results showed that 0.3-0.
View Article and Find Full Text PDFFood Chem
January 2025
College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China; Wuhu Green Food Industry Research Institute Co., Ltd., 241000 Wuhu, China; Wuhu Hight Biotechnology Co., Ltd, 241000 Wuhu, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000 Wuhu, China. Electronic address:
Developing an effective method for extracting soluble dietary fiber (SDF) from bamboo shoot shell (BSS) is of great significance for the resource utilization of BSS. Here, we proposed the combinational strategy of steam explosion (SE), alkaline extraction (AE), and microbial extraction (ME) to enhance BSS-SDF yield. The highest yield of 28.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!