Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Brown rot disease, caused by Monilinia fructicola, poses a significant challenge to peach production in China. The efficacy of mefentrifluconazole, a new triazole fungicide, in controlling brown rot in peaches has been remarkable. However, the resistance risk and mechanism associated with this fungicide remain unclear. This study was designed to assess the resistance risk of M. fructicola to mefentrifluconazole and reveal the potential resistance mechanism.
Results: The mean median effective concentration (EC ) of 101 M. fructicola isolates to mefentrifluconazole was 0.003 μg mL , and the sensitivity exhibited a unimodal distribution. Seven mefentrifluconazole-resistant mutants were generated from three parental isolates in the laboratory through fungicide adaption. The biological characteristics of the resistant mutants revealed that three of them exhibited enhanced survival fitness compared to the parental isolates, whereas the remaining four mutants displayed reduced survival fitness. Mefentrifluconazole showed strong positive cross-resistance with fenbuconazole, whereas no cross-resistance was observed with pyrimethanil, procymidone or pydiflumetofen. No overexpression of MfCYP51 gene was detected in the resistant mutants. Multiple sequence alignment revealed that three resistant mutants (MXSB2-2, Mf12-1 and Mf12-2) had a point mutation (G461S) in MfCYP51 protein. Molecular docking techniques confirmed the contribution of this point mutation to mefentrifluconazole resistance.
Conclusion: The risk of M. fructicola developing resistance to mefentrifluconazole is relatively low-to-medium and point mutation G461S in MfCYP51 could confer mefentrifluconazole resistance in M. fructicola. This study provided essential data for monitoring the emergence of resistance and developing resistance management strategies for mefentrifluconazole. © 2023 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.7909 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!