The relationship between skeletal muscle mass and the KOSHA cardiovascular risk in obese male workers.

Ann Occup Environ Med

Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea.

Published: October 2023

AI Article Synopsis

  • The study investigates how skeletal muscle mass affects the risk of cardiovascular diseases (CVDs) in obese male manufacturing workers in Korea.
  • It assessed various indicators of skeletal muscle mass in 2,007 obese male workers to determine their association with CVD risk using ordinal logistic regression analysis.
  • Findings suggest that higher skeletal muscle index (SMI) increases CVD risk, whereas higher skeletal muscle mass percent (SMM%), SMM/body mass index (BMI), and muscle-fat ratio (MFR) decrease it, highlighting the importance of evaluating muscle mass in assessing cardiovascular risks.

Article Abstract

Background: Efforts for the prevention and management of cardiovascular diseases (CVDs) in workers have been actively pursued. Obesity is one of the important risk factors related to CVDs. Obesity has various metabolic characteristics, and some individuals can be metabolically healthy. Body composition including skeletal muscle mass is known to have protective effect in obesity. The study aims to investigate the association between skeletal muscle mass and Korea Occupational Safety and Health Agency (KOSHA) CVD risk among obese male manufacturing workers in Korea and to identify appropriate indicators of skeletal muscle mass for predicting risk of CVDs.

Methods: The study was conducted on 2,007 obese male workers at a manufacturing industry aged more than 19 years. Skeletal muscle mass, skeletal muscle index (SMI), skeletal muscle mass percent (SMM%) and skeletal muscle to body fat ratio (MFR) were used to evaluate body composition and these indicators were divided into quartiles. The odds ratios (ORs) and 95% confidence intervals (CIs) for the KOSHA CVD risk groups according to quartiles of skeletal muscle mass indicators were estimated using ordinal logistic regression analysis.

Results: The OR for the KOSHA CVD risk groups in the highest quartile of SMI was 1.67 (95% CI: 1.42-1.92), while the ORs for the KOSHA CVD risk groups in the highest quartiles of SMM%, SMM/body mass index (BMI), and MFR were 0.47 (95% CI: 0.22-0.72), 0.51 (95% CI: 0.05-0.76), and 0.48 (95% CI: 0.23-0.74), respectively.

Conclusions: We found that high SMI increase the likelihood of high risk of CVDs, while high SMM%, SMM/BMI, and MFR lower the likelihood of high risk of CVDs. Accurate evaluation of skeletal muscle mass can help assess the cardiovascular risk in obese male workers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10654537PMC
http://dx.doi.org/10.35371/aoem.2023.35.e40DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
40
muscle mass
32
obese male
16
kosha cvd
16
cvd risk
16
risk obese
12
male workers
12
risk groups
12
muscle
10
risk
10

Similar Publications

Body composition abnormalities are prognostic markers in several types of cancer, including colorectal cancer (CRC). Using our data distribution on body composition assessments and classifications could improve clinical evaluations and support population-specific opportune interventions. This study aimed to evaluate the distribution of body composition from computed tomography and assess the associations with overall survival among patients with CRC.

View Article and Find Full Text PDF

Probing regional glycogen metabolism in humans non-invasively has been challenging due to a lack of sensitive approaches. Here we studied human muscle glycogen dynamics post-exercise with a spatial resolution of millimeters and temporal resolution of minutes, using relayed nuclear Overhauser effect (glycoNOE) MRI. Data at 5T showed a homogeneous distribution of glycogen in resting muscle, with an average concentration of 99 ± 13 mM.

View Article and Find Full Text PDF

Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.

View Article and Find Full Text PDF

Impact of blood flow restriction intensity on pain perception and muscle recovery post-eccentric exercise.

Clin Physiol Funct Imaging

January 2025

Faculty of Health Sciences, Division of Physiotherapy and Rehabilitation, Istanbul Okan University, Istanbul, Turkey.

Background: Delayed onset muscle soreness (DOMS) is a well-established phenomenon characterized by ultrastructural muscle damage that typically develops following unfamiliar or high-intensity exercise. DOMS manifests with a constellation of symptoms, including muscle tenderness, stiffness, edema, mechanical hyperalgesia, and a reduced range of joint motion. In recent years, the application of blood flow restriction (BFR) has garnered attention for its potential impact on DOMS.

View Article and Find Full Text PDF

Background: Mycotoxins are considered one of the most important problems and threats that face poultry producers.

Aim: This study was conducted to investigate the pathological, hematological, and biochemical alterations in chickens fed on mycotoxins contamination ration.

Methods: 434 feed samples were collected from poultry farms operating in Babil Governorate/Iraq, where feed samples were collected over the course of 2023, and these samples were tested by direct competitive enzyme-linked immunosorbent assay to determine the level of mycotoxins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!