Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the increasing occurrence and severity of cyanobacterial harmful algal blooms (cHAB) at the global scale, there is an urgent need for rapid, accurate, accessible, and cost-effective detection tools. Here, we detail the RosHAB workflow, an innovative, in-the-field applicable genomics approach for real-time, early detection of cHAB outbreaks. We present how the proposed workflow offers consistent taxonomic identification of water samples in comparison to traditional microscopic analyses in a few hours and discuss how the generated data can be used to deepen our understanding on cyanobacteria ecology and forecast HABs events. In parallel, processed water samples will be used to iteratively build the International cyanobacterial toxin database (ICYATOX; http://icyatox.ibis.ulaval.ca) containing the analysis of novel cyanobacterial genomes, including phenomics and genomics metadata. Ultimately, RosHAB will (1) improve the accuracy of on-site rapid diagnostics, (2) standardize genomic procedures in the field, (3) facilitate these genomics procedures for non-scientific personnel, and (4) identify prognostic markers for evidence-based decisions in HABs surveillance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10646836 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1267652 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!