Effect of pH and medium composition on chain elongation with producing C-C fatty acids.

Front Microbiol

Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN Group, University of A Coruña, Coruña, Spain.

Published: November 2023

Introduction: Chain elongation technology, which involves fermentation with anaerobic bacteria, has gained attention for converting short and medium chain substrates into valuable and longer-chain products like medium chain fatty acids (MCFAs). In the recent past, the focus of studies with pure chain elongating cultures was on species of other genera, mainly . Recently, other chain elongators have been isolated that deserve further research, such as .

Methods: In this study, batch studies were performed in bottles with two different media to establish the optimal conditions for growth of : (a) a medium rich in different sources of nitrogen and (b) a medium whose only source of nitrogen is yeast extract. Also, batch bioreactor studies at pH values of 5.8, 6.5 and 7.2 were set up to study the fermentation of lactate (i.e., electron donor) and acetate (i.e., electron acceptor) by .

Results And Discussion: Batch bottle studies revealed the yeast extract (YE) containing medium as the most promising in terms of production/cost ratio, producing -caproate rapidly up to 2.62 ± 0.24 g/L. Subsequent bioreactor experiments at pH 5.8, 6.5, and 7.2 confirmed consistent production profiles, yielding C-C fatty acids. A fourth bioreactor experiment at pH 6.5 and doubling both lactate and acetate concentrations enhanced MCFA production, resulting in 3.7 g/L -caproate and 1.5 g/L -caprylate. H and CO production was observed in all fermentations, being especially high under the increased substrate conditions. Overall, this study provides insights into 's behavior in lactate-based chain elongation and highlights optimization potential for improved productivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653306PMC
http://dx.doi.org/10.3389/fmicb.2023.1281103DOI Listing

Publication Analysis

Top Keywords

chain elongation
12
fatty acids
12
c-c fatty
8
medium chain
8
yeast extract
8
chain
7
medium
6
medium composition
4
composition chain
4
elongation producing
4

Similar Publications

Substantially Improving CO Permeability and CO/CH Selectivity of Matrimid Using Functionalized-TiCT.

ACS Appl Mater Interfaces

January 2025

Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.

Mixed-matrix membranes (MMMs) with favorable interfacial interactions between dispersed and continuous phases offer a promising approach to overcome the traditional trade-off between permeability and selectivity in membrane-based gas separation. In this study, we developed free-standing MMMs by embedding pristine and surface-modified TiCT MXenes into Matrimid 5218 polymer for efficient CO/CH separation. Two-dimensional TiCT with adjustable surface terminations provided control over these critical interfacial interactions.

View Article and Find Full Text PDF

Effects of black soldier fly larvae oil on lipid metabolism, liver fatty acid composition, and plasma metabolite profiles in gilthead seabream juveniles.

Comp Biochem Physiol B Biochem Mol Biol

December 2024

Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.

The potential of insects as alternative ingredients in animal feeds is well-established. However, limited information is available on the use of insect oils as alternative lipid sources in aquafeeds. To address this, a study was conducted on gilthead seabream (Sparus aurata) juveniles to evaluate the effects of including black soldier fly (Hermetia illucens) larvae oil (HIO).

View Article and Find Full Text PDF

Deformation, Rupture, and Morphology Hysteresis of Copolymer Nanovesicles in Uniform Shear Flow.

Langmuir

December 2024

Department of Biomedical and Chemical Engineering and the Bioinspired Institute, Syracuse University, Syracuse, New York 13244, United States.

Copolymer nanovesicles are used extensively in chemical processes and biomedical applications in which they are subjected to dynamic flow environments. Flow-induced vesicle deformation, fragmentation, and reorganization modify the energetic (e.g.

View Article and Find Full Text PDF

Mildly acidic pH boosts up CO conversion to isobutyrate in H driven gas fermentation system.

Water Res

December 2024

Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia. Electronic address:

As a greenhouse gas, massive carbon dioxide (CO) has been generated due to organic matter degradation in wastewater treatment processes. Microbial gas fermentation offers a promising approach to capture CO and generate various valuable chemicals. However, limited studies have achieved branched or medium-chain fatty acids production via gas fermentation.

View Article and Find Full Text PDF

Photocatalytic Alkene-Migrative Chain Elongation of 2-Phosphinostyrenes with Aldehydes.

Org Lett

December 2024

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.

The photocatalytic alkene-migrative chain elongation reaction of 2-phosphinostyrenes with aldehydes under mild conditions in response to blue light was demonstrated. A broad range of aldehydes, both aliphatic and aromatic, participated in this reaction to afford alkene-phosphine oxides in a -selective manner. Mechanistic experiments suggested the formation of benzophospholene-based ylide intermediates via photocatalytic cyclization of phosphinostyrenes followed by solvent-mediated proton transfer under base-free reaction conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!