Background: Cell therapy is a useful treatment method for wide spectrum of diseases which utilizes the immunosuppressive and regenerative abilities of administered cells. It is essential to build a transport system of tissues from which cells are harvested, because various external factors, such as temperature, time, air pressure, and vibration affect the cell functions isolated from body tissues. In particular, temperature is a critical factor which determines the viability of the cells and organs. In this study, we investigated the optimal temperature during the transportation of lipoaspirates from which adipose -derived stem cells (ASCs) were isolated.

Method: Lipoaspirates obtained by liposuctions (lipomatic or vaser method) were transported in four different temperature zones (4, 20, 32, and 37 °C) in a transport container which is electrically controlled to maintain a constant temperature during transport. Stromal vascular fractions (SVFs) were harvested from the lipoaspirate, and the cell number, viability and proliferation rate and the yield of ASCs were examined. In addition, the metabolic state of the cells was examined.

Results: ASCs from lipoaspirates transported at high temperature significantly decreased cell viability, while those at low temperature maintained high cell viability and showed good cell proliferation. In addition, transportation of lipoaspirates at low temperature resulted in a high level of NAD+/NADH, coenzymes involved in intracellular metabolism, and a low level of lactate in lipoaspirate suppressed the glycolytic system of intracellular metabolism, in ASCs.

Conclusion: The lipoaspirate transported at 4 °C exhibited best results regarding live cell number, viability and cell proliferation in our experiments. This study offers a direction to build a transport system that connects laboratories and hospitals and achieve a beneficial therapy for patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667615PMC
http://dx.doi.org/10.1016/j.reth.2023.11.005DOI Listing

Publication Analysis

Top Keywords

low temperature
12
intracellular metabolism
12
cell viability
12
temperature
9
cell
9
high cell
8
build transport
8
transport system
8
transportation lipoaspirates
8
cell number
8

Similar Publications

Thermogravimetry coupled with simultaneous evolved gas analysis by mass spectrometry was used for discerning organic compounds released during the thermal degradation of paint whose chemical compositions are not readily accessible. Thermogravimetric analyses up to 600°C revealed distinct degradation patterns under inert and oxidative conditions. Significant degradation of paint initiates at around 360°C and concludes at 500°C in a nitrogen atmosphere.

View Article and Find Full Text PDF

Direct regeneration of spent lithium-ion batteries offers economic benefits and a reduced CO2 footprint. Surface prelithiation, particularly through the molten salt method, is critical in enhancing spent cathode repair during high-temperature annealing. However, the sluggish Li+ transport kinetics, which relies on thermally driven processes in the traditional molten salt methods, limit the prelithiation efficiency and regeneration of spent cathodes.

View Article and Find Full Text PDF

Low-Temperature Oxidation of Methane to Methanol on a Zeolitic Octahedral Metal Oxide.

Chemistry

January 2025

Ningbo University, School of Material Science and Chemical Engineering, Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa, 221-8686, Japan., 315211, Ningbo, CHINA.

Direct oxidation of methane to methanol utilizing molecular oxygen under mild conditions is an important yet challenging process due to the difficulty in activation of methane under such conditions. In this research, we report zeolitic octahedral metal oxides based on cobalt vanadotungstates, which act as the catalysts for oxidation of methane using molecular oxygen as the oxidant without co-reductants at a low temperature of 90 oC even as low as 60 oC. This catalytic process results in the high-yield production of methanol as the major product.

View Article and Find Full Text PDF

Sn-carbon nanocomposite anode for all-solid-state chloride-ion batteries operating at room temperature.

Chem Commun (Camb)

January 2025

Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.

All-solid-state chloride-ion batteries promise high theoretical energy density and room-temperature operation. However, conventional Sn anodes suffer from low material utilization attributed to large particle size and volume expansion. Here, nano-sized Sn particles in an N-doped carbon framework are used as an anode, resulting in ∼12% higher capacity compared to conventional Sn, due to improved Sn utilization and suppression of volume expansion.

View Article and Find Full Text PDF

Dissolution, solvation and diffusion in low-temperature zinc electrolyte design.

Nat Rev Chem

January 2025

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China.

Aqueous zinc-based batteries have garnered the attention of the electrochemical energy storage community, but they suffer from electrolytes freezing and sluggish kinetics in cold environments. In this Review, we discuss the key parameters necessary for designing anti-freezing aqueous zinc electrolytes. We start with the fundamentals related to different zinc salts and their dissolution and solvation behaviours, by highlighting the effects of anions and additives on salt solubility, ion diffusion and freezing points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!