It is well known that atmospheric aerosol size and composition impact air quality, climate, and health. The aerosol composition is typically a mixture and consists of a wide range of organic and inorganic particles that interact with each other. Furthermore, water vapor is ubiquitous in the atmosphere, in indoor air, and within the human body's respiratory system, and the presence of water can alter the aerosol morphology and propensity to form droplets. Specifically, aerosol mixtures can undergo liquid-liquid phase separation (LLPS) in the presence of water vapor. However, the experimental conditions for which LLPS impacts water uptake and the subsequent prediction of aerosol mixtures are poorly understood. To improve our understanding of aerosol mixtures and droplets, this study explores two ternary systems that undergo LLPS, namely, the 2MGA system (sucrose + ammonium sulfate + 2-methylglutaric acid) and the PEG1000 system (sucrose + ammonium sulfate + polyethylene glycol 1000). In this study, the ratio of species and the O:C ratios are systematically changed, and the hygroscopic properties of the resultant aerosol were investigated. Here, we show that the droplet activation above 100% RH of the 2MGA system was influenced by LLPS, while the droplet activation of the PEG1000 system was observed to be linearly additive regardless of chemical composition, O:C ratio, and LLPS. A theoretical model that accounts for LLPS with O:C ratios was developed and predicts the water uptake of internally mixed systems of different compositions and phase states. Hence, this study provides a computationally efficient algorithm to account for the LLPS and solubility parameterized by the O:C ratio for droplet activation at supersaturated relative humidity conditions and may thus be extended to mixed inorganic-organic aerosol populations with unspeciated organic composition found in the ambient environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655592 | PMC |
http://dx.doi.org/10.1021/acsenvironau.3c00015 | DOI Listing |
J Phys Chem A
January 2025
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.
Ignition of the lubricating fluid in a mechanical system is a highly undesirable and unsafe condition that can arise from the elevated temperatures and pressures to which the lubricant is subjected. It is therefore important to understand the fundamental chemistry behind its ignition to predict and prevent this condition. Lubricating oils, particularly those with a mineral oil base, are very complex mixtures of thousands of hydrocarbons.
View Article and Find Full Text PDFEnviron Int
January 2025
Blue Growth Research Lab, Ghent University, Wetenschapspark 1, Bluebridge, 8400 Oostende, Belgium. Electronic address:
Sea spray aerosol (SSA) is a complex mixture of natural substances that can be inhaled by coastal residents. Previous studies have suggested that SSA may have positive effects on human health, but the molecular mechanisms and the factors influencing these effects are poorly understood. In this study, we exposed human bronchial epithelial cells (BEAS-2B) to natural SSA samples, collected monthly using quartz microfiber filters mounted on tripods within 15 m of the waterline, with air drawn through pumps, throughout a one-year period at the Ostend coast, Belgium, and measured cellular gene expression changes using RNA sequencing.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Civil Engineering, APTL, Centre for Environmental Science and Engineering (CESE), IIT Kanpur, Kanpur, 208016, UP, India.
Dicarboxylic acids (DCAs), with their deliquescence and hygroscopic nature, can function as cloud condensation nuclei (CCN) and ice nuclei (IN), affecting rainfall patterns. DCA analysis can serve as organic molecular markers for anthropogenic and biogenic sources. Very few studies deal with the optimization of the protocol for qualitative and quantitative analysis of DCAs using gas chromatography-mass spectrometry (GC-MS).
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2024
Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA.
The objective of this study is to investigate the potential mutagenic effects of the exposure of mice to aerosols produced from the component liquids of an electronic nicotine delivery system (ENDS). The use of electronic cigarettes (e-cigs) and ENDSs has increased tremendously over the past two decades. From what we know to date, ENDSs contain much lower levels of known carcinogens than tobacco smoke.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!