Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Objectives: Researchers have recently focused on the biological and synthetic effects of 1, 2, and 4-triazole fused heterocyclic molecules because they have tremendous medicinal value. The objective of the present study was to carry out the 3D QSAR evaluation on the substituted 1,2, and 4 triazole derivatives for anticancer potential using k-Nearest Neighbor-Molecular Field Analysis (kNN-MFA) method.
Methods: Using the molecular design suite, a three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis was undertaken on a series of 4-amino-5-(pyridin3yl)-4H-1, 2, and 4-triazole-3-thiol anticancer drugs (Vlife MDS). This study used a genetic algorithm and a manual selection approach on 20 substituted 1, 2, and 4-triazole derivatives. Based on the genetic algorithm (GA), the 3D-QSAR model was generated. Statistical significance and predictive capacity were evaluated using internal and external validation.
Results: The most significant model has a correlation coefficient of 0.9334 (squared correlation coefficient r2 = 0.8713), showing that biological activity and descriptors have a strong relationship. The model exhibited internal predictivity of 74.45 percent (q2 = 0.2129), external predictivity of 81.09 percent (pred r2 = 0.8417), and the smallest error term for the predictive correlation coefficient (pred r2se = 0.1255). The model revealed steric (S 1047--0.0780--0.0451S 927) and electrostatic (E 1002) data points that contribute remarkably to anticancer activity. A molecular field study demonstrates a link between the structural features of substituted triazole derivatives and their activities.
Conclusion: The good-to-moderate anticancer potential of compounds confirms the significant pharmacological role of 1,2,4-triazole derivatives. These results could lead to the identification of potential chemical compounds with optimal anticancer activity and minimal side effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661185 | PMC |
http://dx.doi.org/10.1016/j.jsps.2023.101836 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!