Potential roles of circulating microRNAs in the healing of type 1 diabetic wounds treated with green tea extract: molecular and biochemical study.

Heliyon

Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.

Published: November 2023

AI Article Synopsis

  • Circulating microRNAs (miRNAs) play a crucial role in diabetic wound healing by influencing inflammation, angiogenesis, and extracellular matrix remodeling, making them potential targets for herbal treatments like green tea polyphenols (GTPs).
  • The study aimed to understand how specific miRNAs interact with genes that induce apoptosis to regulate skin wound healing in diabetic rats treated with green tea.
  • Results showed that treating diabetic wounds with green tea hydro extract improved healing significantly within 14 days, enhancing wound contraction, epithelialization, and reducing scar formation compared to untreated diabetic rats.

Article Abstract

Background: Circulating miRNAs have been implicated in various aspects of diabetic wound healing, including inflammation, angiogenesis, and extracellular matrix remodeling. Thus, in alternative herbal medicine strategies, miRNAs will be potential therapeutic molecular targets in nonhealing wounds. These could be valuable elements for understanding the molecular basis of diabetic wound healing and could be used as good elements in bioinformatics.

Objectives: To elucidate the molecular mechanisms of microRNAs in association with apoptosis-inducing genes in controlling skin wound healing in diabetic wounds treated with green tea polyphenols (GTPs).

Methods: Green tea hydro extract (GTE) at doses of100-200 mg/ml was topically applied to the skin tissues of rats with T1DM induced by a single dose of streptozotocin (STZ; 100 mg/kg, in 0.01 M sodium citrate, pH 4.3-4.5) injected intraperitoneally for seven consecutive days to induce T1DM. The rats were treated with green tea for three weeks. A sterile surgical blade was used to inflict a circular wound approximately 2 cm in diameter on the anterior-dorsal side of previously anesthetized rats by a combination of ketamine hydrochloride (50 mg/kg, i.e., body weight) and xylazine hydrochloride. Afterward, the molecular roles of the circulating miRNAs miR-21, miR-23a, miR-146a, and miR-29b and apoptotic genes were determined by quantitative real-time PCR to evaluate Bax, Caspase-3, and Bcl-2 in wound healing. In addition, HPLC analysis was also performed to estimate the active polyphenols (GTPs) present in the hydro extract of green tea leaves.

Results: Wound healing was improved in diabetic skin wounds following treatment with GTE at doses of 100-200 mg/dl for three weeks. The wound parameters contraction, epithelialization, and scar formation significantly improved in a short time (14 days) compared to the longer periods identified in diabetic non-treated rats (20 days) and the standard control (15.5 days). Molecular analyses reported a significant increase in the levels of miR-21, miR-23a, and miR-146a and a decrease in the levels of miR-29b in green tea-treated diabetic rats compared to those in the standard control and STZ-diabetic non-treated rats. In addition, the molecular apoptotic genes Bax and caspase-3 significantly increased, and the BcL-2 gene significantly decreased following treatment with green tea polyphenols.

Conclusions: The data showed that active green tea polyphenols (GTPs) present in GTE significantly improved diabetic wound healing by controlling apoptotic genes and the circulating microRNAs miR-21, miR-23a, miR-146a, and miR-29b, which might be involved in cellular apoptosis and angiogenesis processes. Thus, to establish a future model for the treatment of diabetic wounds, further studies are needed to understand the potential association of these biological parameters with the wound-healing process in diabetic wounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665742PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e22020DOI Listing

Publication Analysis

Top Keywords

green tea
28
wound healing
24
diabetic wounds
16
treated green
12
diabetic wound
12
mir-21 mir-23a
12
mir-23a mir-146a
12
apoptotic genes
12
diabetic
10
roles circulating
8

Similar Publications

BRA-YOLOv7: improvements on large leaf disease object detection using FasterNet and dual-level routing attention in YOLOv7.

Front Plant Sci

December 2024

The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.

Tea leaf diseases are significant causes of reduced quality and yield in tea production. In the Yunnan region, where the climate is suitable for tea cultivation, tea leaf diseases are small, scattered, and vary in scale, making their detection challenging due to complex backgrounds and issues such as occlusion, overlap, and lighting variations. Existing object detection models often struggle to achieve high accuracy in detecting tea leaf diseases.

View Article and Find Full Text PDF

Protein phosphorylation is an important post-translational modification that regulates almost all cellular processes, such as cellular metabolism, growth, differentiation, signal transduction, and gene regulation. Mass spectrometry, which acts as an automated and sensitive method, enables global analysis of protein phosphorylation. However, several technical challenges need to be addressed when analyzing protein phosphorylation in a global manner.

View Article and Find Full Text PDF

Kombucha is fermented and produced with a biofilm called a symbiotic culture of bacteria and yeast, which is drunk all over the world for its beneficial effects on human health and energy levels. The metagenomic study of kombucha frequently detected microorganisms in proteobacteria, firmicutes, and actinobacteria. And also, yeast and fungi are Ascomycota and Basidiomycota is present in green leaf and sugarcane juice fermented kombucha.

View Article and Find Full Text PDF

, a R2R3-MYB transcription factor from purple tea (), positively regulates anthocyanin biosynthesis.

Front Plant Sci

December 2024

Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong, China.

In tea (), anthocyanins are important secondary metabolites that are linked to leaf color. Anthocyanin biosynthesis is a complex biological process, in which multiple genes including structural and regulatory genes are involved. Here, we describe the cloning and characterizing of a new R2R3-MYB transcription factor gene, , isolated from purple tea variety ''.

View Article and Find Full Text PDF

Objectives: This paper further explores the Sigma Metric (SM) and its application in clinical chemistry. It discusses the SM, assay stability, and control failure relationship.

Content: : SM is not a valid measure of assay stability or the likelihood of failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: