Nitrophenols, which are defined as an important toxic and carcinogenic pollutant in agricultural and industrial wastewater due to their solubility in water, form of resistance against all organisms in water resources. It is vital that these compounds, which are highly toxic as well as highly explosive, are removed from the aquatic ecosystem. In this paper, we reported the preparation and advanced characterization of Pd nanoparticles supported over hydroxyapatite nanospheres (Pd@-HAp). The catalytic efficiency of the Pd@-HAp catalyst was examined in the reduction of nitrophenols in water in the presence of NaBH as reducing agent and the great activity of catalyst have been specified against 2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol and 2,4,6-trinitrophenol compounds with 70.6, 82.4, 27.6 and 41.4 min TOF values, respectively. Another important point is that the Pd@-HAp catalyst has perfect reusability performance (at 5th reuse between 68.5 and 92.8 %) for the reduction of nitrophenols. In addition, catalytic studies were carried out at different temperatures in order to determine thermodynamic parameters such as , and .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660537 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e21517 | DOI Listing |
Polymers (Basel)
December 2024
Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
This work focuses on the preparation and application of silver nanoparticles/organophilic clay/polyethylene glycol for the catalytic reduction of the contaminants methylene blue (MB) and 4-nitrophenol (4-NP) in a simple and binary system. Algerian clay was subjected to a series of treatments including acid treatment, ion exchange with the surfactant hexadecyltrimethylammonium bromide (HTABr), immobilization of polyethylene glycol polymer, and finally dispersion of AgNPs. The molecular weight of polyethylene glycol was varied (100, 200, and 4000) to study its effect on the stabilization of silver nanoparticles (AgNPs) and the catalytic activity of the resulting samples.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
The removal of toxic nitrophenols from the industrial wastewater is urgently needed from health, environmental and economic aspects. The present study deals with the synthesis of crosslinked vinyl polymer Poly(divinylbenzene) (poly(DVB)) through free radical polymerization technique using AIBN as initiator and acetonitrile as solvent. The prepared polymer was used as a support for silver nanoparticles via chemical reduction of silver nitrate on the polymer network.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Pulmonary and Critical Care Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).
View Article and Find Full Text PDFACS Appl Nano Mater
January 2024
Department of Chemistry, University of Central Florida, Orlando, Florida 32816 (USA).
Understanding the origin of enhanced catalytic activity is critical to heterogeneous catalyst design. This is especially important for non-noble metal-based catalysts, notably metal oxides, which have recently emerged as viable alternatives for numerous thermal catalytic processes. For thermal catalytic reduction/hydrogenation using metal oxide nanoparticles, enhanced catalytic performance is typically attributed to increased surface area and oxygen vacancies.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia.
Introduction: Malaria caused by spp. is the most hazardous disease in the world. It is regarded as a life-threatening hematological disorder caused by parasites transferred to humans by the bite of Anopheles mosquitoes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!