The green synthesis of nanoparticles (NPs) utilizing a green path is eco-friendly and profitable compared to traditional physical and chemical techniques. This research conducted a green synthesis of gold NPs (AuNPs) and silver NPs (AgNPs) using an extract of Teak () and their anticancer and anti-microbial activities. Various techniques like transmission-electron microscopy (TEM), UV-Vis spectroscopy, thermal-gravimetric analyses (TGA), X-ray diffraction (XRD), and Fourier transform-infrared spectroscopy (FT-IR) were used to analyze synthesized AuNPs and AgNPs. The effects of different factors like the amount of extract used, solution pH, and contact time were measured to obtain the best possible conditions for synthesizing NPs. The AgNPs showed significant anticancer activity against HepG2 with an IC of 6.17 mg/ml compared to Teak extract (>50 mg/ml) and AuNPs (44.1 mg/ml), while AuNPs (6 % Teak extract and 2.9 × 10 M HAuCl) showed significant antibacterial and antifungal activity against , , and with an inhibition zone of 11 mm, 12 mm, 12.5 mm, and 15.5 mm, respectively as compared to other treatments. These findings confirmed the medical applications of AuNPs and AgNPs and might open new possibilities in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663833 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e21698 | DOI Listing |
Nutr Res
January 2025
Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, Madrid, Spain. Electronic address:
l-Theanine is a unique non-protein amino acid found abundantly in tea leaves. Interest in its potential use as a dietary supplement has surged recently, especially claims related to promoting relaxation and cognitive enhancement. This review surveys the chemistry, metabolism, and purported biological activities of l-theanine.
View Article and Find Full Text PDFChemistry
January 2025
VIT University, Materials Chemistry Division, School of Advanced Sciences, VIT University, 632014, Vellore, INDIA.
Amidines are a vital class of bioactive compounds and often necessitate multiple components for their synthesis. Therefore, exploring efficient and sustainable methodologies for their synthesis is indispensable. Herein, we disclose an alternative and greener method for synthesizing an unexplored new class of amidines through the photochemical synergistic effect of copper/nitroxyl radical catalysis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Chemistry Chinese Academy of Sciences, Institute of chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA.
Electrocatalytic nitrate reduction reaction (NO3RR) in alkaline electrolyte presents a sustainable pathway for energy storage and green ammonia (NH3) synthesis. However, it remains challenging to obtain high activity and selectivity due to the limited protonation and/or desorption processes of key intermediates. Herein, we propose a strategy to regulate the acid hardness nature of Cu catalyst by introducing appropriate modifier.
View Article and Find Full Text PDFCell Biochem Funct
January 2025
Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India.
The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).
View Article and Find Full Text PDFMol Divers
January 2025
School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China.
A series of new arecoline derivatives containing amino acid fragments were synthesized, and their fungicidal activities were investigated. All synthesized compounds were characterized by H NMR, CNMR, and HRMS. Preliminary bioactivity assays demonstrated that Compounds 3k, 3n, 3p, 3q, 3r, and 3s exhibited significant antifungal activity against Botryosphaeria cactivora, Botryosphaeria dothidea, and Fusarium pseudograminearum at a concentration of 100 μg/mL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!