Using polycarbonate (PC) due to its incredible properties as a suitable replacement for inorganic glasses has been increasing. Nevertheless, the low hardness limits its applications in more industries. Hence, it requires to be coated with hard anti-scratch optical coatings to overcome these limitations. In the current work, sol-gel-prepared thin films based on (3-Glycidyloxypropyl) trimethoxysilane (GPTMS)-AlO were applied on PC substrates. First, silica and alumina sols were synthesized by a sol-gel process, individually. Then, the prepared sols were mixed at different ratios and dip-coated on the plasma etched pretreatment PC substrates. Curing of the samples was done in an oven at 100 °C. The produced thin films were characterized by field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Attenuated total reflectance -Fourier transform infrared spectroscopy (ATR-FTIR), and UV/Vis spectroscopy techniques. The obtained results indicated that the PC hardness increased from 6B to H by deposition of nano-hybrid coatings. After applying a nano-hybrid coating, transmittance was increased from 88 % to 91 % and the reflectance decreased from 10 % to 5 %. Sample with a 1:4 GPTMS-AlO ratio showed the best results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665679 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e21569 | DOI Listing |
Sci Adv
January 2025
State Key Laboratory of Advanced Welding and Joining of Materials and Structures, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
Perovskite oxides have a wide variety of physical properties that make them promising candidates for versatile technological applications including nonvolatile memory and logic devices. Chemical tuning of those properties has been achieved, to the greatest extent, by cation-site substitution, while anion substitution is much less explored due to the difficulty in synthesizing high-quality, mixed-anion compounds. Here, nitrogen-incorporated BaTiO thin films have been synthesized by reactive pulsed-laser deposition in a nitrogen growth atmosphere.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China.
Heat dissipation has become a critical challenge in modern electronics, driving the need for a revolution in thermal management strategies beyond traditional packaging materials, thermal interface materials, and heat sinks. Cubic boron arsenide (c-BAs) offers a promising solution, thanks to its combination of high thermal conductivity and high ambipolar mobility, making it highly suitable for applications in both electronic devices and thermal management. However, challenges remain, particularly in the large-scale synthesis of a high-quality material and the tuning of its physical properties.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, Sofia 1164, Bulgaria.
Spontaneous bubble growths in liquids are usually triggered by rapid changes in pressure or temperature that can lead to liquid gas supersaturation. Here, we report alternative scenarios of the spontaneous growths of bubbles inside a high-saturation-vapor-pressure and high-air-solubility perfluorocarbon liquid (PP1) that were observed under ambient quiescent conditions. First, we investigate spontaneous bubble growth inside the single PP1 phase, which was left to evaporate freely.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
Multilayer thin films composed of dielectric BaCaZrTiO (BCZT) and oxygen-deficient BCZT (BCZT-OD) were fabricated on (001)-oriented NSTO substrates using the pulsed laser deposition (PLD) technique. Unlike conventional approaches to energy storage capacitors, which primarily focus on compositional or structural modifications, this study explored the influence of the layer sequence and periodicity. The interface between the NSTO substrate and the BCZT-OD layer forms a Schottky barrier, resulting in electric field redistribution across the sublayers of the BCZT/BCZT-OD//(1P) thin film.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Anisotropic carrier transport and deep-level defect of antimony selenosulfide (Sb(S,Se)) absorber are two vital auses restraining the photovoltaic performance of this emerging thin-film solar cell. Herein, chelate engineering is proposed to prepare high-quality Sb(S,Se) film based on hydrothermal deposition approach, which realizes desirable carrier transport and passivated defects by using tetrahedral PO ion in dibasic sodium phosphate (NaHPO, DSP). The PO Lewis structure, on one hand in the form of [(SbO)(PO)] chelate, can adsorb on the polar planes of cadmium sulfide (CdS) layer, promoting the heterogeneous nucleation, and on the other hand, the tetrahedral PO inhibits horizontal growth of (SbS(e)) ribbons due to size effects, thus achieving desirable [hk1] orientation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!