A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Occupational safety assessment of biogenic urea nanofertilisers using pulmonary, and ocular models. | LitMetric

Occupational safety assessment of biogenic urea nanofertilisers using pulmonary, and ocular models.

Heliyon

National Centre of Excellence for Advanced Research in Agricultural Nanotechnology, TERI - Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), New Delhi, 110003, India.

Published: November 2023

Nanomaterials (NMs) are now gaining popularity to be used in agriculture as fertilisers to reduce the dose of conventional fertilisers and enhance nutrient use efficiency. Urea has found its application as a conventional nitrogenous fertiliser since long, however, the nutrient use efficiency of the bulk form of urea is low due to issues related to ammonia volatilisation. This study proposes a biogenic synthesis route to develop urea nanoparticles that can be used as nano-fertiliser for better uptake and hence improved nutrient efficiency. Large scale production and widespread application of these nano-fertilisers to the agricultural fields will enhance the direct exposure to workers and farmers. Therefore, the occupational safety evaluation becomes critical. In this study, we report a new method for synthesis of urea nanoparticles (TNU, absolute size: 12.14 ± 7.79 nm) followed by nano-safety evaluation. Herein, the pulmonary and ocular compatibilities of TNU were investigated and respectively. The assay for cellular mitochondrial activity was carried out on human lung fibroblasts (WI-38) under varied TNU exposure concentrations up to 72 h. The acute biocompatibility effect, ocular irritation and sub-lethal effects were measured on New Zealand Rabbit. The results show that TNU do not exhibit any cytotoxicity and detrimental cell mitochondrial activity up to the highest tested concentration of 1000 μg/mL and 72 h of testing. The animal experiment results also show that neither acute nor sub-lethal toxic effects can be detected after TNU ocular instillation up to 21 days when tested up to environmentally relevant concentration of 15 μg/mL. These results suggest the occupational safety of biogenic urea nanoparticles and support its application as nanofertiliser.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660040PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e21623DOI Listing

Publication Analysis

Top Keywords

occupational safety
12
nutrient efficiency
12
urea nanoparticles
12
biogenic urea
8
pulmonary ocular
8
mitochondrial activity
8
urea
6
tnu
5
safety assessment
4
assessment biogenic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!