In this investigation, a polymeric fusion of chitosan (CS) and thermosensitive poly (N-isopropyl acrylamide) - PNIPAAm - encapsulated a magnetotocosome, biocompatible nanocarrier. This encapsulation strategy demonstrated improved drug entrapment efficiency, achieving up to 98.8 %. Additionally, it exhibited extended stability, optimal particle dimensions, and the potential for industrial scaling, thus facilitating controlled drug delivery of sorafenib tosylate to cancerous tissue. Reversible Addition-Fragmentation Chain Transfer (RAFT) techniques were employed to synthesize PNIPAAm. The effects of polymer molecular weight and polydispersity index on the lower critical solution temperature (LCST) were evaluated. The resulting polymeric amalgamation, involving the thermosensitive PNIPAAm synthesized using RAFT techniques and CS that coated the magnetotocosome (CS-Raft PNIPAAm-magnetotocosome) with an LCST approximately at 45 °C, holds the potential to enhance drug bioavailability and enable applications in hyperthermia treatment, controlled release, and targeted drug delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658271 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e21794 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!