An investigation was carried out in order to develop an accurate analytical solution and a numerical (FEA) solution for steady-state heat transfer in a circular sandwich structure incorporated with convective-radiative boundary conditions. The dimensional governing equations and boundary conditions were developed in the form of a 4th order algebraic equation, and then the solution was obtained using Ferrari's method. By solving for the roots of the quartic equation, we were able to determine the dimensionless temperature fields of the FG sandwich composite. The findings obtained utilizing the exact analytical solution for the FG sandwich composite under thermal loads were satisfactorily validated against those data obtained using the Galerkin finite element approximation. The impact of geometric and thermo-physical characteristics, such as Biot number , Inner and outer surface thickness ratio , ambient temperature ratio , radiation-conduction parameter , and thermal conductivity ratio on the efficiency of heat transfer, has also been studied. This study reveals the distinct effect of Biot number on the inner and outer layers of the composite cylinder. It shows that has a negligent effect on temperature distribution; on the other hand, the outer surface () minimizes temperature variation. However, for design consideration, a thicker inner face sheet is not recommended in high thermal load, as has an insignificant impact on inner surface thickness on top surface temperature. Moreover, the outer surface temperature appears to be more sensitive to than the radiation-convection side. Furthermore, the given analytical solution is adequately verified against the proposed FEA method, having an error of less than .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643303 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e21725 | DOI Listing |
Anal Chem
January 2025
School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China.
Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Physics, Washington State University, Pullman, WA 99163, USA.
This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Mechanics, University Politehnica of Timisoara, Piata Victoriei 2, 300006 Timisoara, Romania.
This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Electric Power Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland.
During the heat treatment of round steel bars, a heated charge in the form of a cylindrically formed bundle is placed in a furnace. This type of charge is a porous granular medium in which a complex heat flow occurs during heating. The following heat transfer mechanisms occur simultaneously in this medium: conduction in bars, conduction within the gas, thermal radiation between the surfaces of the bars, and contact conduction across the joints between the adjacent bars.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.
C-UHTC is an ideal aerospace material because of its exceptional properties, but its machinability is facing great challenges. Electrical discharge machining (EDM) offers a potential solution, but its removal mechanism remains unclear, lacking reliable prediction tools to guide the actual production. This paper deeply explores the EDM removal mechanism of C-ZrB-SiC through single-pulse experiments, high-speed camera observations, and thermal-fluid coupling simulations, revealing key processes like heat transfer, phase transformation, molten pool dynamics, crater formation, and reinforcing phase effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!