The LiS-PS pseudo-binary system has been a valuable source of promising superionic conductors, with α-LiPS, β-LiPS, HT-LiPS, and LiPS having excellent room-temperature Li-ion conductivity >0.1 mS/cm. The metastability of these phases at ambient temperature motivates a study to quantify their thermodynamic accessibility. Through calculating the electronic, configurational, and vibrational sources of free energy from first principles, a phase diagram of the crystalline LiS-PS space is constructed. New ground-state orderings are proposed for α-LiPS, HT-LiPS, LT-LiPS, and LiPS. Well-established phase stability trends from experiments are recovered, such as polymorphic phase transitions in LiPS and LiPS, and the instability of LiPS at high temperature. At ambient temperature, it is predicted that all superionic conductors in this space are indeed metastable but thermodynamically accessible. Vibrational and configurational sources of entropy are shown to be essential toward describing the stability of superionic conductors. New details of the Li sublattices are revealed and are found to be crucial toward accurately predicting configurational entropy. All superionic conductors contain significant configurational entropy, which suggests an inherent correlation between fast Li diffusion and thermodynamic stability arising from the configurational disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653090 | PMC |
http://dx.doi.org/10.1021/acs.chemmater.3c01793 | DOI Listing |
Small
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
Mn-containing sodium superionic conductor (NASICON) compounds have shown considerable potential as cathode for sodium-ion batteries (SIBs) owing to higher working voltage (V/V: 3.9 V), lower cost, and lower toxicity compared to full vanadium-based NASICON NaV(PO). Taking NaVMn(PO) (NVMP) as an example, its practical application is still restricted by poor electronic conductivity, sluggish intrinsic Na diffusion, and poor high-voltage stability.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Materials Science and Engineering, State Key Lab of Silicon and Advanced, Semiconductor Materials, Zhejiang University, Hangzhou 310027, PR China. Electronic address:
NaMnTi(PO) is a promising sodium-ion cathode material due to its relatively high specific capacity, excellent thermodynamic stability and low cost. However, unfavorable electron conductivity and slow kinetics limit its practical application. Here, a strategy of hetero and multivalent anion substitution is proposed to achieve high-rate performance and good capacity retention.
View Article and Find Full Text PDFChem Mater
December 2024
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Solid polymer electrolytes have yet to achieve the desired ionic conductivity (>1 mS/cm) near room temperature required for many applications. This target implies the need to reduce the effective energy barriers for ion transport in polymer electrolytes to around 20 kJ/mol. In this work, we combine information extracted from existing experimental results with theoretical calculations to provide insights into ion transport in single-ion conductors (SICs) with a focus on lithium ion SICs.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
Rationalizing synthetic pathways is crucial for material design and property optimization, especially for polymorphic and metastable phases. Over-stoichiometric rocksalt (ORX) compounds, characterized by their face-sharing configurations, are a promising group of materials with unique properties; however, their development is significantly hindered by challenges in synthesizability. Here, taking the recently identified Li superionic conductor, over-stoichiometric rocksalt Li-In-Sn-O (o-LISO) material as a prototypical ORX compound, the mechanisms of phase formation are systematically investigated.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
Localized atomistic disorder in halide-based solid electrolytes (SEs) can be leveraged to boost Li mobility. In this study, Li transport in structurally modified LiHoCl, via Br introduction and Li deficiency, is explored. The optimized Li Ho Cl Br achieves an ionic conductivity of 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!