Marginal maximum likelihood estimation (MMLE) is commonly used for item response theory item parameter estimation. However, sufficiently large sample sizes are not always possible when studying rare populations. In this paper, empirical Bayes and hierarchical Bayes are presented as alternatives to MMLE in small sample sizes, using auxiliary item information to estimate the item parameters of a graded response model with higher accuracy. Empirical Bayes and hierarchical Bayes methods are compared with MMLE to determine under what conditions these Bayes methods can outperform MMLE, and to determine if hierarchical Bayes can act as an acceptable alternative to MMLE in conditions where MMLE is unable to converge. In addition, empirical Bayes and hierarchical Bayes methods are compared to show how hierarchical Bayes can result in estimates of posterior variance with greater accuracy than empirical Bayes by acknowledging the uncertainty of item parameter estimates. The proposed methods were evaluated via a simulation study. Simulation results showed that hierarchical Bayes methods can be acceptable alternatives to MMLE under various testing conditions, and we provide a guideline to indicate which methods would be recommended in different research situations. R functions are provided to implement these proposed methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664746PMC
http://dx.doi.org/10.1177/01466216231209758DOI Listing

Publication Analysis

Top Keywords

hierarchical bayes
28
empirical bayes
16
bayes methods
16
item parameter
12
bayes
12
bayes hierarchical
12
auxiliary item
8
parameter estimation
8
graded response
8
response model
8

Similar Publications

Introduction: To interact with the environment, it is crucial to distinguish between sensory information that is externally generated and inputs that are self-generated. The sensory consequences of one's own movements tend to induce attenuated behavioral- and neural responses compared to externally generated inputs. We propose a computational model of sensory attenuation (SA) based on Bayesian Causal Inference, where SA occurs when an internal cause for sensory information is inferred.

View Article and Find Full Text PDF

Using genetic data to infer evolutionary distances between molecular sequence pairs based on a Markov substitution model is a common procedure in phylogenetics, in particular for selecting a good starting tree to improve upon. Many evolutionary patterns can be accurately modelled using substitution models that are available in closed form, including the popular general time reversible model (GTR) for DNA data. For more complex biological phenomena, such as variations in lineage-specific evolutionary rates over time (heterotachy), other approaches such as the GTR with rate variation (GTR ) are required, but do not admit analytical solutions and do not automatically allow for likelihood calculations crucial for Bayesian analysis.

View Article and Find Full Text PDF

Background: The first trimester of pregnancy is critical for fetal development, making early antenatal care visits essential for timely check-ups and managing potential complications. However, delayed antenatal care initiation remains a public health challenge in sub-Saharan Africa, including Kenya. Therefore, this study aimed to assess and provide up-to-date information on time to first antenatal care visit and its predictors among women in Kenya, using data from the most recent 2022 Kenya Demographic and Health Survey (KDHS).

View Article and Find Full Text PDF

Due to the increased availability of intensive longitudinal data, researchers have been able to specify increasingly complex dynamic latent variable models. However, these models present challenges related to overfitting, hierarchical features, non-linearity, and sample size requirements. There are further limitations to be addressed regarding the finite sample performance of priors, including bias, accuracy, and type I error inflation.

View Article and Find Full Text PDF

Recent widespread reductions in body size across species have been linked to increasing temperatures; simultaneous increases in wing length relative to body size have been broadly observed but remain unexplained. Size and shape may change independently of one another, or these morphological shifts may be linked, with body size mediating or directly driving the degree to which shape changes. Using hierarchical Bayesian models and a morphological time series of 27 366 specimens from five North American migratory passerine bird species, we tested the roles that climate and body size have played in shifting wing length allometry over four decades.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!