In this study, we developed a mutagenesis protocol specifically designed for chrysanthemum cv. "Candid" in order to introduce genetic variation. By subjecting chrysanthemum shoots to different doses of physical and chemical mutagens, we successfully generated a total of 24 mutants, each with unique genetic compositions. We observed that the mortality rate was lowest when the shoots were exposed to 10 Gy gamma irradiation and 1.00% EMS. To assess the diversity and relatedness among the mutants, we employed RAPD and SSR markers. The combination of these markers allowed us to construct a dendrogram that effectively categorized the mutant population into distinct clusters based on the specific mutagen treatments. Interestingly, the mutants induced by 10 Gy gamma irradiation exhibited greater genetic diversity in terms of flower colors. On the other hand, mutants created with 1.00% EMS displayed a higher level of variation and yielded more viable mutants. To determine the optimal markers for studying genetic diversity, we analyzed the polymorphic information content (PIC) of different markers. Among the tested markers, OPA-07 (RAPD) and JH47 (SSR) showed the highest PIC values, indicating their effectiveness in capturing genetic variability within the mutant population. Conversely, the PIC values of OPD-07 and JH20 demonstrated the lowest among the markers tested. Our results revealed a percentage of polymorphism ranging from 81.81% to 100% for RAPD markers and 66.66% to 100% for SSR markers. These findings indicate that physical mutation induced by 10 Gy gamma irradiation can be clearly distinguished from chemical mutation induced by EMS at concentrations of 1% and 0.75% in chrysanthemum cv. "Candid.″ Overall, this study provides valuable insights into the genetic composition of the generated mutants and highlights their potential for enhancing chrysanthemum-breeding programs. The identified markers, particularly, OPA-07 and JH47, can serve as valuable tools for future studies aimed at exploring and exploiting the genetic diversity within the chrysanthemum population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666220 | PMC |
http://dx.doi.org/10.1021/acsomega.3c05723 | DOI Listing |
J Transl Med
January 2025
Department of Radiation Oncology, The Second Affiliated Hospital of Dalian Medical University, No. 467 of Zhongshan Road, Shahekou District, Dalian, 116023, China.
Objective: Cervical cancer is a common malignancy among women, and radiotherapy remains a primary treatment modality across all disease stages. However, resistance to radiotherapy frequently results in treatment failure, highlighting the need to identify novel therapeutic targets to improve clinical outcomes.
Methods: The expression of molecule interacting with CasL-2 (MICAL2) was confirmed in cervical cancer tissues and cell lines through western blotting (WB) and immunohistochemistry (IHC).
Sensors (Basel)
December 2024
China Institute of Atomic Energy, P.O. Box 275 (26), Beijing 102413, China.
Fast-neutron reactors are an important representative of Generation IV nuclear reactors, and due to the unique structure and material properties of fast reactor fuel, traditional mechanical cutting methods are not applicable. In contrast, laser cutting has emerged as an ideal alternative. However, ensuring the stability of optical fibers and laser cutting heads under high radiation doses, as well as maintaining cutting quality after irradiation, remains a significant technical challenge.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Neurological Surgery, Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, TX 77030, USA.
Radiation has been used to treat meningiomas since the mid-1970s. Traditionally, radiation was reserved for patients unfit for major surgery or those with surgically inaccessible tumors. With an increased quantity and quality of imaging, and an aging population, there has been a rise in incidentally diagnosed meningiomas with smaller tumors at diagnosis time.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
Plants in space face unique challenges, including chronic ionizing radiation and reduced gravity, which affect their growth and functionality. Understanding these impacts is essential to determine the cultivation conditions and protective shielding needs in future space greenhouses. While certain doses of ionizing radiation may enhance crop yield and quality, providing "functional food" rich in bioactive compounds, to support astronaut health, the combined effects of radiation and reduced gravity are still unclear, with potential additive, synergistic, or antagonistic interactions.
View Article and Find Full Text PDFSci Rep
January 2025
Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!