Matrix acidizing is a technique that is widely used in the petroleum industry to remove scales and create channels in the rock. Removal of scales and creation of channels (wormhole) enhance productivity. Conventional acidizing fluids, such as hydrochloric acid (HCl) for carbonate and a mixture of hydrofluoric acid (HF) and HCl acid, are used for the matrix acidizing process. However, these fluids have some drawbacks, including strong acid strength, corrosion at high temperatures, and quick reactions with scale and particles. Emulsified acid systems (EASs) are used to address these drawbacks. EASs can create deeper and narrower wormholes by reducing the reaction rate of the acid due to the external oil phase. However, EASs have a much higher viscosity compared to conventional acidizing fluids. The high viscosity of EASs leads to a high drag that restricts pumping rates and consumes energy. This study aims to utilize environmentally friendly and widely available nanomaterials as drag-reducing agents (DRAs) of the EAS. The nanomaterials used in this study are carbon nanodots (CNDs). CNDs have unique properties and are used in diverse applications in different industries. The size of these CNDs is usually smaller than 10 nm. CNDs are characterized by their biocompatibility and chemical stability. This study investigates the use of CNDs as DRAs for EAS. Several experiments have been conducted to investigate the CNDs as a DRA for the EAS. The developed EAS was initially tested for conductivity and drop-test analysis to ensure the formation of an inverted emulsion. Thereafter, the thermal stability for the range of temperatures and the rheological properties of the EAS were evaluated to meet the criteria of field operation. Then flow experiments with EASs were conducted before and after adding the CNDs to investigate the efficacy of drag reduction of EASs. The results revealed that CNDs can be used as viscosity reducers for the EAS, where adding the CNDs to the EAS reduces the viscosity at two different HCl concentrations (15 and 20%). It reduces the viscosity of the EAS in the presence of corrosion inhibitors as well as other additives to the EAS, showing its compatibility with the field formulation. The drag reduction was observed at the range of temperatures investigated in the study. The conductivity, stability, and rheology experiments for the sample taken after the flow experiment are consistent, ensuring CNDs work as a DRA. The developed EAS with CNDs is robust in terms of field mixing procedures and thermally stable. The CNDs can be used as a DRA with EAS, which will reduce drag in pipes, increasing pumping rates and saving energy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666234PMC
http://dx.doi.org/10.1021/acsomega.3c06297DOI Listing

Publication Analysis

Top Keywords

drag reduction
12
cnds
12
eas
11
environmentally friendly
8
friendly nanomaterials
8
emulsified acid
8
matrix acidizing
8
conventional acidizing
8
acidizing fluids
8
acid hcl
8

Similar Publications

Terrestrial friction-reducing properties of mucus and scale anisotropy in the amphibious Northern Snakehead (Channa argus).

Integr Comp Biol

January 2025

Department of Biology, Henson School of Science and Technology, Salisbury University, Salisbury, MD 21801, USA.

The mucus coating around a fish's body is essential to its survival. It contains antimicrobial properties, aids in drag reduction, and protects against physical damage. It is versatile in the aquatic environment but little is known about the role of mucus in amphibious fishes.

View Article and Find Full Text PDF

Limited research exists on the 3D geometric models and aerodynamic characteristics of the Grey-headed Albatross (GHA). Despite existing methods for extracting bird wing cross-sections, few studies consider deflections due to aerodynamic pressure. With the GHA known for its exceptional flight speed and purported wing-lock mechanism, it offers a valuable subject for studying fixed-wing aerodynamicsin nature.

View Article and Find Full Text PDF

Background: Drafting for drag reduction is a tactic commonly employed by elite athletes of various sports. The strategy has been adopted by Kenyan runner Eliud Kipchoge on numerous marathon events in the past, including the 2018 and 2022 editions of the Berlin marathon (where Kipchoge set two official world records), as well as in two special attempts to break the 2 h mark for the distance, the Nike Breaking2 (2017) and the INEOS 1:59 Challenge (2019), where Kipchoge used an improved drafting formation to finish in 1:59:40, although that is not recognized as an official record.

Results: In this study, the drag of a realistic model of a male runner is calculated by computational fluid dynamics for a range of velocities.

View Article and Find Full Text PDF

Hypothesis: We hypothesise that superhydrophobic surfaces can achieve effective interfacial slip and drag reduction even under non-Newtonian, shear-thinning fluid flows. Unlike Newtonian fluids, where slip is primarily influenced by viscosity and surface tension, we anticipate that the shear-thinning nature of these fluids may enhance slip length and drag reduction.

Experiments And Numerical Analysis: The superhydrophobic surfaces used in this study, featuring a dual-scale random topography, were fabricated via a spray coating process, and low-concentration xanthan gum solutions (50-250 ppm) were used as model shear-thinning fluids of low elasticity.

View Article and Find Full Text PDF

The gas (or plastron) trapped between micro/nano-scale surface textures, such as that on superhydrophobic surfaces, is crucial for many engineering applications, including drag reduction, heat and mass transfer enhancement, anti-biofouling, anti-icing, and self-cleaning. However, the longevity of the plastron is significantly affected by gas diffusion, a process where gas molecules slowly diffuse into the ambient liquid. In this work, we demonstrated that plastron longevity could be extended using a gas-soluble and gas-permeable polydimethylsiloxane (PDMS) surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!