Background: It is well known that cancers have a common feature that even if the environment is extremely poor in nutrients, they can still make good use of them to maintain viability as well as to produce new biomass, which is one of the reasons why tumor cells are powerfully less susceptible to senescence and death. The microenvironment has a profound impact on the senescence as well as the growth and development of tumor cells, and it is also the focus of scientists' research because it may even affect the discovery of the treatment and pathogenesis of cancer. And so the study of the microenvironment in the tumor cells is of great significance to the analysis of the tumor cells as well as to the impact of their senescence. Similarly, the microenvironment of osteosarcoma is also crucial for its impact, but to our knowledge, there is no bibliometric study that systematically analyzes and describes the trends and future hotspots in this field of research as we do, and we are going to fill this gap in this study.
Methods: We searched the Web Science Core Collection 2010-2023 in WOS on August 1, 2023. Based on the criteria needed for the search, we retained articles that matched the topic, excluded studies other than articles and reviews, and selected only studies whose language was English. We performed an intuitive visualization and bibliometric approach to analyze the research content in this field and a systematic visualization of global trends and hotspots in the research of osteosarcoma and the microenvironment, for which we used multiple specialized For this purpose, we used several specialized software packages, such as VOSviewer and the Bibliometrix package for R software. Because research in this area of osteosarcoma and the microenvironment has begun to gain popularity in the last 10 years or so, and is a very novel piece of research, there were almost no studies in this area prior to 2010 and they were not very informative, and in the end, we chose to look at studies from after 2010.
Results: Based on the criteria needed for the search, resulting in a final selection of 821 articles. In the research area related to osteosarcoma and microenvironment, we found that China in Asia and the United States in North America and Italy in Europe were the three countries or regions with the highest number of published articles. In addition, the institution that published the most research in this area was Shanghai Jiao Tong University. In terms of publications in the field of osteosarcoma and microenvironmental research, Baldini, Heymann, and Avnet are among the top 3 authors. The terms "cancer", "cells" and "expression" are found to be more commonly employed.
Conclusion: Using a variety of highly specialized software, we have undertaken a visual and bibliometric study of the current state of research and potential future hotspots in the field of osteosarcoma and microenvironment research. The microenvironment has a profound impact on the senescence and growth and development of cells in tumors, including osteosarcoma, and may even influence the discovery of cancer treatment and pathogenesis, and is also a hotspot and focus that scientists have begun to gradually study in recent years. This analysis and visualization will help guide future research in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663373 | PMC |
http://dx.doi.org/10.3389/fendo.2023.1289319 | DOI Listing |
JCO Precis Oncol
January 2025
Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan.
Purpose: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating -amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with -amplified mCRC from the phase II TRIUMPH trial.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
MeLis Institute, SynatAc Team, Inserm U1314/ UMR CNRS5284, France.
Background And Objectives: Breast cancers (BCs) of patients with paraneoplastic neurologic syndromes and anti-Yo antibodies (Yo-PNS) overexpress human epidermal growth factor receptor 2 (HER2) and display genetic alterations and overexpression of the Yo-onconeural antigens. They are infiltrated by an unusual proportion of B cells. We investigated whether these features were also observed in patients with PNS and anti-Ri antibodies (Ri-PNS).
View Article and Find Full Text PDFPLoS One
January 2025
Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.
FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Public Health, Capital Medical University, Beijing, 100069, P. R. China.
Substantial epidemiological evidence suggests a significant correlation between particulate matter 2.5 (PM) and lung cancer. However, the mechanism underlying this association needs to be further elucidated.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!