Engineered T cells expressing chimeric antigen receptors (CARs) have been proven as efficacious therapies against selected hematological malignancies. However, the approved CAR T cell therapeutics strictly rely on viral transduction, a time- and cost-intensive procedure with possible safety issues. Therefore, the direct transfer of transcribed CAR-mRNA into T cells is pursued as a promising strategy for CAR T cell engineering. Electroporation (EP) is currently used as mRNA delivery method for the generation of CAR T cells in clinical trials but achieving only poor anti-tumor responses. Here, lipid nanoparticles (LNPs) were examined for CAR-mRNA delivery and compared with EP. LNP-CAR T cells showed a significantly prolonged efficacy in comparison with EP-CAR T cells as a result of extended CAR-mRNA persistence and CAR expression, attributed to a different delivery mechanism with less cytotoxicity and slower CAR T cell proliferation. Moreover, CAR expression and functionality of mRNA-LNP-derived CAR T cells were comparable to stably transduced CAR T cells but were less exhausted. These results show that LNPs outperform EP and underline the great potential of mRNA-LNP delivery for CAR T cell modification as next-generation transient approach for clinical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663670PMC
http://dx.doi.org/10.1016/j.omtm.2023.101139DOI Listing

Publication Analysis

Top Keywords

car t cell
20
car t cells
12
car
10
lipid nanoparticles
8
t cell engineering
8
car expression
8
t cells
7
t cell
5
nanoparticles outperform
4
outperform electroporation
4

Similar Publications

Messenger ribonucleic acid (mRNA) therapeutics are attracting attention as promising tools in cancer immunotherapy due to their ability to leverage the in vivo expression of all known protein sequences. Even small amounts of mRNA can have a powerful effect on cancer vaccines by promoting the synthesis of tumor-specific antigens (TSA) or tumor-associated antigens (TAA) by antigen-presenting cells (APC). These antigens are then presented to T cells, eliciting strong antitumor immune stimulation.

View Article and Find Full Text PDF

Quantitative pharmacology of dual-targeted bicistronic CAR-T-cell therapy using multiscale mechanistic modeling.

CPT Pharmacometrics Syst Pharmacol

November 2024

Cell Therapy Clinical Pharmacology and Modeling, Precision and Translational Medicine, Oncology Cell Therapy and Therapeutic Area Unit, Takeda Pharmaceuticals, Cambridge, Massachusetts, USA.

Despite the initial success of single-targeted chimeric-antigen receptor (CAR) T-cell therapy in hematological malignancies, its long-term effectiveness is often hindered by antigen heterogeneity and escape. As a result, there is a growing interest in cell therapies targeting multiple antigens (≥2). However, the dose-exposure-response relationship and specific factors influencing the pharmacology of dual-targeted CAR-T-cell therapy remain unclear.

View Article and Find Full Text PDF

Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized the field of cancer immunotherapy and have enhanced the survival of patients with malignant tumors. However, the overall efficacy of ICIs remains unsatisfactory and is faced with two major concerns of resistance development and occurrence of immune-related adverse events (irAEs). Bispecific antibodies (bsAbs) have emerged as promising strategies with unique mechanisms of action to achieve a better efficacy and safety than monoclonal antibodies (mAbs) or even their combination.

View Article and Find Full Text PDF
Article Synopsis
  • CAR T-cell therapies have been effective for blood cancers but face challenges in treating solid tumors; CAR-macrophages (CAR-M) are being explored as an alternative therapy.*
  • CAR-M can be activated and target tumors using tumor-associated antigens, but the mechanisms of their movement and infiltration in tumors are not fully understood.*
  • This study uses a 3D tumor spheroid model created from self-assembling nucleic acid nanostructures to evaluate CAR-M's effectiveness, showing better invasion and tumor-killing abilities compared to traditional 2D models.*
View Article and Find Full Text PDF
Article Synopsis
  • - Pancreatic cancer is a tough-to-treat disease with only a 13% survival rate over five years, and current immunotherapies like CAR T cells aren't very effective for it.
  • - Researchers identified Muc16CD as a new target (tumor-associated antigen) that CAR T cells can attack, which is present in pancreatic tumors.
  • - Muc16CD-targeted CAR T cells show promise in laboratory models, effectively recognizing pancreatic tumor cells and improving tumor control and survival rates.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!