Simultaneous and rapid colorimetric detection of distinct miRNAs using Split-LAMP.

Front Bioeng Biotechnol

Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.

Published: November 2023

Aberrant microRNA (miRNA) expressions are often discovered in many life threatening diseases such as cancer. In particular, recent studies show combinations of miRNA levels have greater diagnostic accuracy as opposed to single miRNA levels. For point-of-care applications, rapid and sensitive isothermal amplification with loop-mediated isothermal amplification (LAMP) has gained significant interest. We developed a cost-effective point-of-care testing (POCT) device for multiple miRNAs that can integrate miRNA signals into a single output. We demonstrate that the loop primers for LAMP can be broken and be used for miRNA detection. This split-LAMP approach provides a logic AND-gate output for two distinct miRNA inputs. We then show that this is potentially useable in point-of-care testing using pH-sensitive dye to give a rapid, colorimetric endpoint readout within 30 min. This novel logic gate approach can potentially be extended to multiple miRNAs such that there can be a powerful diagnostic concept for multiple short RNAs in a point-of-care rapid test.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10652396PMC
http://dx.doi.org/10.3389/fbioe.2023.1271297DOI Listing

Publication Analysis

Top Keywords

rapid colorimetric
8
mirna levels
8
isothermal amplification
8
point-of-care testing
8
multiple mirnas
8
mirna
6
simultaneous rapid
4
colorimetric detection
4
detection distinct
4
distinct mirnas
4

Similar Publications

The overuse of antibiotics has led to the severe contamination of water bodies, posing a considerable hazard to human health. Therefore, the development of an accurate and rapid point-of-care testing (POCT) platform for the quantitative detection of antibiotics is necessary. In this study, Cerium oxide (CeO) and Ferrosoferric oxide (FeO) nanoparticles were simultaneously encapsulated into N-doped nanofibrous carbon microspheres to form of a novel nanozyme (CeFe-NCMzyme) with a porous structure, high surface area, and N-doped carbon material properties, leading to a considerable enhancement of the peroxidase (POD)-like activity compared with that of the CeO or FeO nanoparticles alone.

View Article and Find Full Text PDF

Natural enzymes are a class of biological catalysts that can catalyze a specific substrate. Although natural enzymes have catalytic activity, they are susceptible to the influence of external environment such as temperature, and storage requirements are more stringent. Since the first discovery of magnetic FeO nanoparticles with peroxidase-like activity in 2007, the research on nanoenzymes has entered a rapid development stage.

View Article and Find Full Text PDF

Rapid and sensitive detection of Epstein-Barr virus cell-free DNA (EBV cfDNA) is crucial for early diagnosis and monitoring of nasopharyngeal carcinoma (NPC), but accessibility to screening is limited by complicated and costly conventional DNA isolation and purification approaches. Here, a fully integrated ion concentration polarization (ICP)-enriched and nanozyme-catalyzed lateral flow assay (ICP-cLFA) is developed, enabling total analysis of EBV cfDNA in whole blood samples, with DNA isolation, pre-concentration, and amplification performed on a microfluidic chip, consequently providing the signal readout within 75 min. Specifically, ICP preconcentration and amplification steps, together with target recognition catalyzed by a platinum-decorated mesoporous gold nanosphere (MGNS@Pt) nanozyme, result in an ultralow detection limit of 4 aM in standard cfDNA samples and 100 aM in whole blood from NPC-bearing rats.

View Article and Find Full Text PDF

VO microcubes as an alternative to peroxidase/TMB for colorimetric detection of HO: Development of glucose sensing method.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, University of Kurdistan, Sanandaj 66177-15175 Iran; Research Center for Nanotechnology, University of Kurdistan, Sanandaj 66177-15175 Iran. Electronic address:

The study focuses on the synthesis of VO microcubes for the non-enzymatic colorimetric determination of HO.Vanadium oxide nanostructures are known for their redox activity and layered structures, making VO a valuable material for sensing applications. The characterization of the prepared sample was done using XPS, XRD, Raman spectroscopy, and SEM techniques.

View Article and Find Full Text PDF

Multifunctional Nanozyme with Aptamer-Based Ratiometric Fluorescent and Colorimetric Dual Detection of Prostate-Specific Antigen.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

The adsorption of DNA probes onto nanomaterials represents a promising bioassay technique, generally employing fluorescence or catalytic activity to generate signals. A significant challenge is maintaining the catalytic activity of chromogenic catalysts during detection while enhancing accuracy by overcoming the limitations of single-signal transmission. This article presents an innovative multimodal analysis approach that synergistically combines the oxidase-like activity of Fe-N-C nanozyme (Fe-NC) with red fluorescent carbon quantum dots (R-CQDs), further advancing the dual-mode analysis method utilizing R-CQDs@Fe-NC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!