How to effectively enhance the mechanical stability of intramedullary implants for unstable femoral intertrochanteric fractures (UFIFs) is challenging. The authors developed a new implant for managing such patients. Our aim was to enhance the whole mechanical stability of internal devices through increasing antirotation and medial support. We expected to reduce stress concentration in implants. Each implant was compared to proximal femoral nail antirotation (PFNA) via finite element method. Adult AO/OTA 31-A2.3 fracture models were constructed, and then the new intramedullary system (NIS), PFNA, InterTan nail models were assembled. We simulated three different kinds of load cases, including axial, bending, and torsion loads. For further comparison of PFNA and the NIS, finite element analysis (FEA) was repeated for five times under axial loads of 2100 N. Two types of displacement and stress distribution were assessed. Findings showed that the NIS had the best mechanical stability under axial, bending, and torsion load conditions compared to PFNA and InterTan. It could be seen that the NIS displayed the best properties with respect to maximal displacement while PFNA showed the worst properties for the same parameter in axial loads of 2100 N. In terms of maximal stress, also the NIS exhibited the best properties while PFNA showed the worst properties in axial loads of 2100 N. For bending and torsion load cases, it displayed a similar trend with that of axial loads. Moreover, under axial loads of 2100 N, the difference between the PFNA group and the NIS group was statistically significant ( < 0.05). The new intramedullary system exhibited more uniform stress distribution and better biomechanical properties compared to the PFNA and InterTan. This might provide a new and efficacious device for managing unstable femoral intertrochanteric fractures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10661970 | PMC |
http://dx.doi.org/10.3389/fbioe.2023.1279067 | DOI Listing |
Cureus
December 2024
Department of Prosthodontics, Graduate School of Dentistry, Showa University, Tokyo, JPN.
Purpose: This study aims to evaluate the effects of taper angle and the number of insertion-removal cycles on the retention force of 4 mol% yttria partially stabilized zirconia (4Y-PSZ) double crowns over time.
Materials And Methods: Primary and secondary crowns were fabricated using 4Y-PSZ with taper angles of 2°, 4°, and 6° (n=15). Retention force during crown removal was measured after applying 50-N and 100-N loads.
Med Biol Eng Comput
January 2025
Biomedical Engineering, Bahçeşehir University, Çırağan Caddesi Osmanpaşa Mektebi Sokak No: 4-6 Beşiktaş, İstanbul, 34353, Turkey.
This study aims to understand the impact of backpack carriage, a regular activity for many, on back muscles and joint mobility during walking so that clinicians can develop strategies or products to ensure individuals' safety and well-being. Surface electromyography (EMG) and XSENS Awinda motion capture systems were used to analyze the effects of carrying a backpack (12% of body weight) on erector spinae and multifidus muscles, as well as spinal, hip, knee, and ankle joints. Subjects walked at 4 km/h on flat and inclined surfaces.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.
Damage mechanisms are a key factor in materials science and are essential for understanding and predicting the behavior of materials under complex loading conditions. In this paper, the influence of different directions, different rates and different model parameters on the mechanical behavior of AZ31 magnesium alloy during the tensile process is investigated based on the secondary development of the VUMAT user subroutine based on the GTN damage model and verified by the tensile experiments at different loading rates and in different directions. The results show that AZ31 magnesium alloy exhibits significant differences in mechanical properties in radial and axial stretching, where the yield strength is lower in the radial direction than in the axial direction, and the elongation is the opposite.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
To achieve the assembled connection between dovetail profiled steel sheets and the boundary members in dovetail profiled steel concrete composite shear walls (DPSCWs), self-tapping screws were employed. Three DPSCW specimens connected with self-tapping screws were tested under combined axial and cyclic lateral loads to evaluate their hysteretic response, focusing on the influence of the number of self-tapping screws and the axial compression ratio. The self-tapping screw-connected DPSCWs exhibited a mixed failure mode, characterized by shear failure of the profiled steel sheets and compression-bending failure of multiple wall limbs divided by ribs on the web concrete.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhejiang Uiversity, Chemistry, 866 Yuhangtang Road, 310058, Hangzhou, CHINA.
Heck silylation of unactivated alkenes is an efficient strategy for the synthesis of useful organosilicon compounds. However, extensive efforts have been dedicated to only achieving achiral molecules. Herein, a highly regio- and enantioselective cobalt-catalyzed Heck silylation of unactivated alkenes with hydrosilanes is reported for the first time, providing access to axially chiral alkenes in good to excellent yields with 87-98% ee.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!