As a critical component of the OX-ZEO composite catalysts toward syngas conversion, the Cr-doped ZnO ternary system can be considered as a model system for understanding oxide catalysts. However, due to the complexity of its structures, traditional approaches, both experimental and theoretical, encounter significant challenges. Herein, we employ machine learning-accelerated methods, including grand canonical Monte Carlo and genetic algorithm, to explore the ZnO(1010) surface with various Cr and oxygen vacancy (OV) concentrations. Stable surfaces with varied Cr and OV concentrations were then systematically investigated to examine their influence on the CO activation via density functional theory calculations. We observe that Cr tends to preferentially appear on the surface of ZnO(1010) rather than in its interior regions and Cr-doped structures incline to form rectangular islands along the [0001] direction at high Cr and OV concentrations. Additionally, detailed calculations of CO reactivity unveil an inverse relationship between the reaction barrier () for C-O bond dissociation and the Cr and OV concentrations, and a linear relationship is observed between OV formation energy and for CO activation. Further analyses indicate that the C-O bond dissociation is much more favored when the adjacent OVs are geometrically aligned in the [1210] direction, and Cr is doped around the reactive sites. These findings provide a deeper insight into CO activation over the Cr-doped ZnO surface and offer valuable guidance for the rational design of effective catalysts for syngas conversion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660660PMC
http://dx.doi.org/10.1021/acscatal.3c03648DOI Listing

Publication Analysis

Top Keywords

syngas conversion
12
cr-doped zno
12
machine learning-accelerated
8
activation cr-doped
8
catalysts syngas
8
c-o bond
8
bond dissociation
8
unravelling impact
4
impact metal
4
metal dopants
4

Similar Publications

CO driven tunable syngas synthesis via CO photoreduction using a novel NiCo bimetallic metal-organic frameworks.

J Colloid Interface Sci

January 2025

School of Chemistry, Sun Yat-sen University, Guangzhou 510275, Guangdong, China. Electronic address:

Syngas has important industrial applications, and converting CO to CO is critical for syngas production. Metal-organic frameworks (MOFs) have demonstrated significant potential in photocatalytic syngas conversion, although the impact of catalytic reactions on tunable H/CO ratios remains unclear. Herein, we present a novel bimetallic NiCo-MOF catalyst, NiCo, exhibiting high catalytic activity in syngas conversion due to the CO product self-driven effect.

View Article and Find Full Text PDF

Sequential catalysis enables efficient pyrolysis of food waste for syngas production.

Bioresour Technol

January 2025

Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077 Hong Kong. Electronic address:

Thermochemical conversion technologies are emerging as one of the most promising approaches to tackle food waste crisis. However, the existing techniques confront significant challenges in terms of syngas selectivity and catalyst stability. This study introduced a cost-effective Joule heating approach utilizing sequential catalysts composed of treated stainless steel (SS) and biochar to optimize syngas production from food waste.

View Article and Find Full Text PDF

Understanding microbial syngas fermentation rates.

Appl Microbiol Biotechnol

December 2024

Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.

Syngas fermentation to ethanol has reached industrial production. Further improvement of this process would be aided by quantitative understanding of the influence of imposed reaction conditions on the fermentation performance. That requires a reliable model of the microbial kinetics.

View Article and Find Full Text PDF

Unravelling the Effect of Oxygen on the Sintering Mechanism of Pt/CeO in the CO Oxidation Reaction.

J Phys Chem Lett

January 2025

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.

Sintering significantly contributes to the deactivation of supported metal catalysts under reaction conditions, influenced by various factors, including temperature, atmosphere, and metal-support interactions. The sintering mechanism under the reaction conditions remains complex and ambiguous. This study delves into the sintering behavior of platinum on CeO under CO oxidation conditions, mainly employing transmission electron microscopy to elucidate the effects of different gas components on the sintering mechanism at elevated temperatures.

View Article and Find Full Text PDF

The use of mixed cultures in gas fermentations could reduce operating costs in the production of liquid chemicals such as alcohols or carboxylic acids. However, directing reducing equivalents towards the desired products presents the challenge of co-existing competing pathways. In this study, two trickle bed reactors were operated at acetogenic and chain elongating conditions to explore the fate of electron equivalents (ethanol, H, and CO) and test pH oscillations as a strategy to target chain-elongated products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!