Intranasal (i.n.) vaccination with adjuvant-free plasmid DNA encoding the leishmanial antigen LACK (LACK DNA) has shown to induce protective immunity against both cutaneous and visceral leishmaniasis in rodents. In the present work, we sought to evaluate the safety and effectiveness of d,l-glyceraldehyde cross-linked chitosan microparticles (CCM) as a LACK DNA non-intumescent mucoadhesive delivery system. CCM with 5 μm of diameter was prepared and adsorbed with a maximum of 2.4 % (w/w) of DNA with no volume alteration. Histological analysis of mouse nostrils instilled with LACK DNA / CCM showed microparticles to be not only mucoadherent but also mucopenetrant, inducing no local inflammation. Systemic safeness was confirmed by the observation that two nasal instillations one week apart did not alter the numbers of bronchoalveolar cells or blood eosinophils; did not alter ALT, AST and creatinine serum levels; and did not induce cutaneous hypersensitivity. When challenged in the footpad with , mice developed significantly lower parasite loads as compared with animals given naked LACK DNA or CCM alone. That was accompanied by increased stimulation of Th1-biased responses, as seen by the higher T-bet / GATA-3 ratio and IFN-γ levels. Together, these results demonstrate that CCM is a safe and effective mucopenetrating carrier that can increase the efficacy of i.n. LACK DNA vaccination against cutaneous leishmaniasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665653PMC
http://dx.doi.org/10.1016/j.jvacx.2023.100403DOI Listing

Publication Analysis

Top Keywords

lack dna
20
chitosan microparticles
8
dna
8
intranasal vaccination
8
vaccination cutaneous
8
cutaneous leishmaniasis
8
dna ccm
8
lack
6
ccm
5
crosslinked chitosan
4

Similar Publications

Background: The St-genome-sharing taxa are highly complex group of the species with the St nuclear genome and monophyletic origin in maternal lineages within the Triticeae, which contains more than half of polyploid species that distributed in a wide range of ecological habitats. While high level of genetic heterogeneity in plastome DNA due to a reticulate evolutionary event has been considered to link with the richness of the St-genome-sharing taxa, the relationship between the dynamics of diversification and molecular evolution is lack of understanding.

Results: Here, integrating 106 previously and 12 newly sequenced plastomes representing almost all previously recognized genomic types and genus of the Triticeae, this study applies phylogenetic reconstruction methods in combination with lineage diversification analyses, estimate of sequence evolution, and gene expression to investigate the dynamics of diversification in the tribe.

View Article and Find Full Text PDF

Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM.

View Article and Find Full Text PDF

Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines.

Vaccines (Basel)

December 2024

State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.

Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failures in breeding pigs and respiratory diseases in growing pigs, is a widespread and challenging disease. The agent, PRRSV, is a single-strand RNA virus that is undergoing continuous mutation and evolution, resulting in the global spread of multiple strains with different genetic characteristics and variable antigens. There are currently no effective measures to eradicate PRRS, and vaccination is crucial for controlling the disease.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) have shown promise as a delivery system for nucleic acid-based therapeutics, including DNA, siRNA, and mRNA vaccines. The immune system plays a critical role in the response to these nanocarriers, with innate immune cells initiating an early response and adaptive immune cells mediating a more specific reaction, sometimes leading to potential adverse effects. Recent studies have shown that the innate immune response to LNPs is mediated by Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs), which recognize the lipid components of the nanoparticles.

View Article and Find Full Text PDF

Harnessing the Power of Our Immune System: The Antimicrobial and Antibiofilm Properties of Nitric Oxide.

Microorganisms

December 2024

Advanced Wound Care Research & Development, Convatec, Deeside Industrial Park, Deeside CH5 2NU, UK.

Nitric oxide (NO) is a free radical of the human innate immune response to invading pathogens. NO, produced by nitric oxide synthases (NOSs), is used by the immune system to kill microorganisms encapsulated within phagosomes via protein and DNA disruption. Owing to its ability to disperse biofilm-bound microorganisms, penetrate the biofilm matrix, and act as a signal molecule, NO may also be effective as an antibiofilm agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!