DNA cytosine methylation dynamics and functional roles in horticultural crops.

Hortic Res

Institute of Advanced Biotechnology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.

Published: October 2023

Methylation of cytosine is a conserved epigenetic modification that maintains the dynamic balance of methylation in plants under the regulation of methyltransferases and demethylases. In recent years, the study of DNA methylation in regulating the growth and development of plants and animals has become a key area of research. This review describes the regulatory mechanisms of DNA cytosine methylation in plants. It summarizes studies on epigenetic modifications of DNA methylation in fruit ripening, development, senescence, plant height, organ size, and under biotic and abiotic stresses in horticultural crops. The review provides a theoretical basis for understanding the mechanisms of DNA methylation and their relevance to breeding, genetic improvement, research, innovation, and exploitation of new cultivars of horticultural crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10660380PMC
http://dx.doi.org/10.1093/hr/uhad170DOI Listing

Publication Analysis

Top Keywords

horticultural crops
12
dna methylation
12
dna cytosine
8
cytosine methylation
8
methylation plants
8
mechanisms dna
8
methylation
7
dna
5
methylation dynamics
4
dynamics functional
4

Similar Publications

A Study of the Different Strains of the Genus spp. on Increasing Productivity and Stress Resilience in Plants.

Plants (Basel)

January 2025

National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.

One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.

View Article and Find Full Text PDF

Nitrogen (N) is an essential determinant of strawberry growth and productivity. However, plants exhibit varying preferences for sources of nitrogen, which ultimately affects its use efficiency. Thus, it is imperative to determine the preferred N source for the optimization of indoor strawberry production.

View Article and Find Full Text PDF

Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.

View Article and Find Full Text PDF

Lichuan black tea (LBT) is a well-known congou black tea in China, but there is relatively little research on its processing technology. Echa No. 10 is the main tea tree variety for producing LBT.

View Article and Find Full Text PDF

Iodine is a key micronutrient essential for the synthesis of thyroid hormone, which regulates metabolic processes and maintains overall health. Despite its importance, iodine deficiency is a global health issue, leading to disorders such as goiter, hypothyroidism, and developmental abnormalities. Biofortification of crops with iodine is a promising strategy to enhance the dietary iodine intake, providing an alternative to iodized salt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!