Harnessing Semi-Supervised Machine Learning to Automatically Predict Bioactivities of Per- and Polyfluoroalkyl Substances (PFASs).

Environ Sci Technol Lett

Department of Chemical & Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States.

Published: November 2023

Many per- and polyfluoroalkyl substances (PFASs) pose significant health hazards due to their bioactive and persistent bioaccumulative properties. However, assessing the bioactivities of PFASs is both time-consuming and costly due to the sheer number and expense of and biological experiments. To this end, we harnessed new unsupervised/semi-supervised machine learning models to automatically predict bioactivities of PFASs in various human biological targets, including enzymes, genes, proteins, and cell lines. Our semi-supervised metric learning models were used to predict the bioactivity of PFASs found in the recent Organisation of Economic Co-operation and Development (OECD) report list, which contains 4730 PFASs used in a broad range of industries and consumers. Our work provides the first semi-supervised machine learning study of structure-activity relationships for predicting possible bioactivities in a variety of PFAS species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653214PMC
http://dx.doi.org/10.1021/acs.estlett.2c00530DOI Listing

Publication Analysis

Top Keywords

machine learning
12
semi-supervised machine
8
automatically predict
8
predict bioactivities
8
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
substances pfass
8
bioactivities pfass
8
learning models
8
pfass
6

Similar Publications

A machine learning-based model to predict POD24 in follicular lymphoma: a study by the Chinese workshop on follicular lymphoma.

Biomark Res

January 2025

Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, P.R. China.

Background: Disease progression within 24 months (POD24) significantly impacts overall survival (OS) in patients with follicular lymphoma (FL). This study aimed to develop a robust predictive model, FLIPI-C, using a machine learning approach to identify FL patients at high risk of POD24.

Methods: A cohort of 1,938 FL patients (FL1-3a) from seventeen centers nationwide in China was randomly divided into training and internal validation sets (2:1 ratio).

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Immunomodulatory insights of monoterpene glycosides in endometriosis: immune infiltration and target pathways analysis.

Hereditas

January 2025

Emergency Department, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang Province, China.

Endometriosis is a complex gynecological condition characterized by abnormal immune responses. This study aims to explore the immunomodulatory effects of monoterpene glycosides from Paeonia lactiflora on endometriosis. Using the ssGSEA algorithm, we assessed immune cell infiltration levels between normal and endometriosis groups.

View Article and Find Full Text PDF

Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.

View Article and Find Full Text PDF

Physical activity (PA) reduces the risk of negative mental and physical health outcomes in older adults. Traditionally, PA intensity is classified using METs, with 1 MET equal to 3.5 mL O·min·kg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!